Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542135

ABSTRACT

G-quadruplexes or G4s are non-canonical secondary structures of nucleic acids characterized by guanines arranged in stacked tetraplex arrays. Decades of research into these peculiar assemblies of DNA and RNA, fueled by the development and optimization of a vast array of techniques and assays, has resulted in a large amount of information regarding their structure, stability, localization, and biological significance in native systems. A plethora of articles have reported the roles of G-quadruplexes in multiple pathways across several species, ranging from gene expression regulation to RNA biogenesis and trafficking, DNA replication, and genome maintenance. Crucially, a large amount of experimental evidence has highlighted the roles of G-quadruplexes in cancer biology and other pathologies, pointing at these structurally unique guanine assemblies as amenable drug targets. Given the rapid expansion of this field of research, this review aims at summarizing all the relevant aspects of G-quadruplex biology by combining and discussing results from seminal works as well as more recent and cutting-edge experimental evidence. Additionally, the most common methodologies used to study G4s are presented to aid the reader in critically interpreting and integrating experimental data.


Subject(s)
G-Quadruplexes , DNA/genetics , DNA/chemistry , RNA/genetics , RNA/chemistry , Gene Expression Regulation , DNA Replication
2.
J Vis Exp ; (182)2022 04 28.
Article in English | MEDLINE | ID: mdl-35575502

ABSTRACT

Protein Arginine (R)-methylation is a widespread protein post-translational modification (PTM) involved in the regulation of several cellular pathways, including RNA processing, signal transduction, DNA damage response, miRNA biogenesis, and translation. In recent years, thanks to biochemical and analytical developments, mass spectrometry (MS)-based proteomics has emerged as the most effective strategy to characterize the cellular methyl-proteome with single-site resolution. However, identifying and profiling in vivo protein R-methylation by MS remains challenging and error-prone, mainly due to the substoichiometric nature of this modification and the presence of various amino acid substitutions and chemical methyl-esterification of acidic residues that are isobaric to methylation. Thus, enrichment methods to enhance the identification of R-methyl-peptides and orthogonal validation strategies to reduce False Discovery Rates (FDR) in methyl-proteomics studies are required. Here, a protocol specifically designed for high-confidence R-methyl-peptides identification and quantitation from cellular samples is described, which couples metabolic labeling of cells with heavy isotope-encoded Methionine (hmSILAC) and dual protease in-solution digestion of whole cell extract, followed by off-line High-pH Reversed Phase (HpH-RP) chromatography fractionation and affinity enrichment of R-methyl-peptides using anti-pan-R-methyl antibodies. Upon high-resolution MS analysis, raw data are first processed with the MaxQuant software package and the results are then analyzed by hmSEEKER, a software designed for the in-depth search of MS peak pairs corresponding to light and heavy methyl-peptide within the MaxQuant output files.


Subject(s)
Protein Processing, Post-Translational , Proteomics , Mass Spectrometry , Methylation , Peptides/chemistry , Proteome/metabolism , Proteomics/methods
3.
Curr Radiopharm ; 15(1): 32-39, 2022.
Article in English | MEDLINE | ID: mdl-33397277

ABSTRACT

BACKGROUND: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a ß- emitting radioimmunoconjugate (90Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach. METHODS: The synthesis of 90Y-DOTA-nimotuzumab was performed in two days. Nimotuzumab was conjugated with a 50-fold excess of DOTA and then labelled with 90Y3+. The 90Y-DOTA-nimotuzumab preparation was optimized considering several parameters such as pH, temperature and reaction volume. Moreover, the 90Y-DOTA-nimotuzumab stability was evaluated in human plasma. RESULTS: The radioimmunoconjugate 90Y-DOTA-nimotuzumab was obtained with a radiochemical purity greater than 96%, and showed a good stability at 20°C as well as at 37°C in human plasma. CONCLUSIONS: The optimized conditions for a mild and easy preparation of 90Y-DOTA-nimotuzumab joined to a promising stability under physiological conditions suggest to propose this radioimmunoconjugate as a potential diagnostic radiopharmaceutical for ß- radio-guided surgery.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Heterocyclic Compounds , Humans , Immunoconjugates/pharmacology , Organometallic Compounds , Radiopharmaceuticals/pharmacology , Yttrium Radioisotopes/therapeutic use
4.
Methods Mol Biol ; 2361: 35-59, 2021.
Article in English | MEDLINE | ID: mdl-34236654

ABSTRACT

Mass spectrometry (MS)-based proteomics is currently the most successful approach to measure and compare peptides and proteins in a large variety of biological samples. Modern mass spectrometers, equipped with high-resolution analyzers, provide large amounts of data output. This is the case of shotgun/bottom-up proteomics, which consists in the enzymatic digestion of protein into peptides that are then measured by MS-instruments through a data dependent acquisition (DDA) mode. Dedicated bioinformatic tools and platforms have been developed to face the increasing size and complexity of raw MS data that need to be processed and interpreted for large-scale protein identification and quantification. This chapter illustrates the most popular bioinformatics solution for the analysis of shotgun MS-proteomics data. A general description will be provided on the data preprocessing options and the different search engines available, including practical suggestions on how to optimize the parameters for peptide search, based on hands-on experience.


Subject(s)
Proteomics , Software , Algorithms , Databases, Protein , Mass Spectrometry , Peptides , Proteins
5.
Cell Death Dis ; 12(6): 558, 2021 05 29.
Article in English | MEDLINE | ID: mdl-34052831

ABSTRACT

Epithelial ovarian cancer (EOC) is a highly heterogeneous disease with a high death rate mainly due to the metastatic spread. The expression of MDM4, a well-known p53-inhibitor, is positively associated with chemotherapy response and overall survival (OS) in EOC. However, the basis of this association remains elusive. We show that in vivo MDM4 reduces intraperitoneal dissemination of EOC cells, independently of p53 and an immune-competent background. By 2D and 3D assays, MDM4 impairs the early steps of the metastatic process. A 3D-bioprinting system, ad hoc developed by co-culturing EOC spheroids and endothelial cells, showed reduced dissemination and intravasation into vessel-like structures of MDM4-expressing cells. Consistent with these data, high MDM4 levels protect mice from ovarian cancer-related death and, importantly, correlate with increased 15 y OS probability in large data set analysis of 1656 patients. Proteomic analysis of EOC 3D-spheroids revealed decreased protein synthesis and mTOR signaling, upon MDM4 expression. Accordingly, MDM4 does not further inhibit cell migration when its activity towards mTOR is blocked by genetic or pharmacological approaches. Importantly, high levels of MDM4 reduced the efficacy of mTOR inhibitors in constraining cell migration. Overall, these data demonstrate that MDM4 impairs EOC metastatic process by inhibiting mTOR activity and suggest the usefulness of MDM4 assessment for the tailored application of mTOR-targeted therapy.


Subject(s)
Cell Cycle Proteins/metabolism , Ovarian Neoplasms/genetics , Proteomics/methods , Proto-Oncogene Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Female , Humans , Mice , Neoplasm Metastasis , Ovarian Neoplasms/mortality , Survival Analysis
6.
Brain ; 144(10): 3020-3035, 2021 11 29.
Article in English | MEDLINE | ID: mdl-33964137

ABSTRACT

Leukodystrophies are a heterogeneous group of rare inherited disorders that mostly involve the white matter of the CNS. These conditions are characterized by primary glial cell and myelin sheath pathology of variable aetiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in five large consanguineous nuclear families allowed us to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report these two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the underlying cause of this novel form of leukodystrophy with ataxia and sensorineural deafness that includes fibrotic cardiomyopathy and hepatopathy as associated features in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as the RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology; mutations in primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.


Subject(s)
Alleles , Ataxia/genetics , Deafness/genetics , Laminopathies/genetics , Mutation/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Amino Acid Sequence , Animals , Ataxia/diagnosis , COS Cells , Child , Chlorocebus aethiops , Deafness/diagnosis , Drosophila , Female , HEK293 Cells , Humans , Laminopathies/diagnosis , Male , Pedigree , Young Adult
7.
Alzheimers Res Ther ; 12(1): 150, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33198763

ABSTRACT

BACKGROUND: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer's disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. METHODS: Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. RESULTS: The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. CONCLUSIONS: The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.


Subject(s)
Alzheimer Disease , Basal Forebrain , Fatty Acids, Omega-3 , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Animals , Cholinergic Agents , Hippocampus , Mice
8.
Front Cell Dev Biol ; 8: 423, 2020.
Article in English | MEDLINE | ID: mdl-32596240

ABSTRACT

Mutations in PARK2 gene are the most frequent cause of familial forms of Parkinson's disease (PD). This gene encodes Parkin, an E3 ubiquitin ligase involved in several cellular mechanisms, including mitophagy. Parkin loss-of-function is responsible for the cellular accumulation of damaged mitochondria, which in turn determines an increment of reactive oxygen species (ROS) levels, lower ATP production, and apoptosis activation. Given the importance of mitochondrial dysfunction and mitophagy impairment in PD pathogenesis, the aim of the present study was to investigate both total and mitochondrial proteome alterations in human skin fibroblasts of PARK2-mutated patients. To this end, both total and mitochondria-enriched protein fractions from fibroblasts of five PARK2-mutated patients and five control subjects were analyzed by quantitative shotgun proteomics to identify proteins specifically altered by Parkin mutations (mass spectrometry proteomics data have been submitted to ProteomeXchange with the identifier PXD015880). Both the network-based and gene set enrichment analyses pointed out pathways in which Rab GTPase proteins are involved. To have a more comprehensive view of the mitochondrial alterations due to PARK2 mutations, we investigated the impact of Parkin loss on mitochondrial function and network morphology. We unveiled that the mitochondrial membrane potential was reduced in PARK2-mutated patients, without inducing PINK1 accumulation, even when triggered with the ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). Lastly, the analysis of the mitochondrial network morphology did not reveal any significant alterations in PARK2-mutated patients compared to control subjects. Thus, our results suggested that the network morphology was not influenced by the mitochondrial depolarization and by the lack of Parkin, revealing a possible impairment of fission and, more in general, of mitochondrial dynamics. In conclusion, the present work highlighted new molecular factors and pathways altered by PARK2 mutations, which will unravel possible biochemical pathways altered in the sporadic form of PD.

9.
Front Cell Dev Biol ; 8: 137, 2020.
Article in English | MEDLINE | ID: mdl-32195257

ABSTRACT

In the framework of the Human Proteome Project initiative, we aim to improve mapping and characterization of mitochondrial proteome. In this work we implemented an experimental workflow, combining classical biochemical enrichments and mass spectrometry, to pursue a much deeper definition of mitochondrial proteome and possibly mine mitochondrial uncharacterized dark proteins. We fractionated in two compartments mitochondria enriched from HeLa cells in order to annotate 4230 proteins in both fraction by means of a multiple-enzyme digestion (trypsin, chymotrypsin and Glu-C) followed by mass spectrometry analysis using a combination of Data Dependent Acquisition (DDA) and Data Independent Acquisition (DIA). We detected 22 mitochondrial dark proteins not annotated for their function and we provide their relative abundance inside the mitochondrial organelle. Considering this work as a pilot study we expect that the same approach, in different biological system, could represent an advancement in the characterization of the human mitochondrial proteome providing uncharted ground to explore the mitonuclear phenotypic relationships. All spectra have been deposited to ProteomeXchange with PXD014201 and PXD014200 identifier.

10.
Front Mol Biosci ; 6: 55, 2019.
Article in English | MEDLINE | ID: mdl-31380392

ABSTRACT

In all the eukaryotic cells, nucleolytic processing (resection) of a double strand DNA break (DSB) is a key step to channel the repair of the lesion toward the homologous recombination, at the expenses of the non-homologous end joining (NHEJ). The coordinated action of several nucleases and helicases generates 3' single strand (ss) DNA, which is covered by RPA and recombination factors. Molecular details of the process have been first dissected in the model organism Saccharomyces cerevisiae. When DSB ends are occupied by KU, a central component of the NHEJ, the Mre11-Rad50-Xrs2 (MRX) nuclease complex (MRN in human), aided by the associated factors Sae2 (CTIP in human), initiates the resection process, inducing a nick close to the DSB ends. Then, starting from the nick, the nucleases Mre11, Exo1, Dna2, in cooperation with Sgs1 helicase (BLM in human), degrade DNA strand in both the directions, creating the 3' ssDNA filament. Multiple levels of regulation of the break processing ensure faithful DSB repair, preventing chromosome rearrangements, and genome instability. Here we review the DSB resection process and its regulation in the context of chromatin. Particularly, we focus on proteins that limit DSB resection, acting as physical barriers toward nucleases and helicases. Moreover, we also take into consideration recent evidence regarding functional interplay between DSB repair and RNA molecules nearby the break site.

11.
Int J Mol Sci ; 20(10)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137614

ABSTRACT

A number of factors can trigger amyotrophic lateral sclerosis (ALS), although its precise pathogenesis is still uncertain. In a previous study done by us, poisonous liquoral levels of hydrogen sulphide (H2S) in sporadic ALS patients were reported. In the same study very high concentrations of H2S in the cerebral tissues of the familial ALS (fALS) model of the SOD1G93A mouse, were measured. The objective of this study was to test whether decreasing the levels of H2S in the fALS mouse could be beneficial. Amino-oxyacetic acid (AOA)-a systemic dual inhibitor of cystathionine-ß-synthase and cystathionine-γ lyase (two key enzymes in the production of H2S)-was administered to fALS mice. AOA treatment decreased the content of H2S in the cerebral tissues, and the lifespan of female mice increased by approximately ten days, while disease progression in male mice was not affected. The histological evaluation of the spinal cord of the females revealed a significant increase in GFAP positivity and a significant decrease in IBA1 positivity. In conclusion, the results of the study indicate that, in the animal model, the inhibition of H2S production is more effective in females. The findings reinforce the need to adequately consider sex as a relevant factor in ALS.


Subject(s)
Aminooxyacetic Acid/pharmacology , Amyotrophic Lateral Sclerosis/metabolism , Cystathionine beta-Synthase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Aminooxyacetic Acid/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Enzyme Inhibitors/therapeutic use , Female , Male , Mice , Mice, Inbred C57BL , Neuroglia/drug effects , Sex Factors , Superoxide Dismutase-1/genetics
12.
J Proteome Res ; 17(12): 4307-4314, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30284448

ABSTRACT

Mitochondria are undeniably the cell powerhouse, directly affecting cell survival and fate. Growing evidence suggest that mitochondrial protein repertoire affects metabolic activity and plays an important role in determining cell proliferation/differentiation or quiescence shift. Consequently, the bioenergetic status of a cell is associated with the quality and abundance of the mitochondrial populations and proteomes. Mitochondrial morphology changes in the development of different cellular functions associated with metabolic switches. It is therefore reasonable to speculate that different cell lines do contain different mitochondrial-associated proteins, and the investigation of these pools may well represent a source for mining missing proteins (MPs). A very effective approach to increase the number of IDs through mass spectrometry consists of reducing the complexity of the biological samples by fractionation. The present study aims at investigating the mitochondrial proteome of five phenotypically different cell lines, possibly expressing some of the MPs, through an enrichment-fractionation approach at the organelle and protein level. We demonstrate a substantial increase in the proteome coverage, which, in turn, increases the likelihood of detecting low abundant proteins, often falling in the category of MPs, and resulting, for the present study, in the identification of METTL12, FAM163A, and RGS13. All MS data have been deposited to the MassIVE data repository ( https://massive.ucsd.edu ) with the data set identifier MSV000082409 and PXD010446.


Subject(s)
Mitochondria/chemistry , Mitochondrial Proteins/analysis , Proteome/analysis , Cell Line , Chemical Fractionation , Databases, Protein , Humans , Mass Spectrometry/methods , Membrane Proteins/analysis , Methyltransferases/analysis , Neoplasm Proteins/analysis , Proteomics/methods , RGS Proteins/analysis
13.
DNA Repair (Amst) ; 68: 68-74, 2018 08.
Article in English | MEDLINE | ID: mdl-30017059

ABSTRACT

Cas9 endonuclease from S. pyogenes is widely used to induce controlled double strand breaks (DSB) at desired genomic loci for gene editing. Here, we describe a droplet digital PCR (ddPCR) method to precisely quantify the kinetic of formation and 5'-end nucleolytic processing of Cas9-induced DSB in different human cells lines. Notably, DSB processing is a finely regulated process, which dictates the choice between non-homologous end joining (NHEJ) and homology directed repair (HDR). This step of DSB repair is also a relevant point to be taken into consideration to improve Cas9-mediated technology. Indeed, by this protocol, we show that processing of Cas9-induced DSB is impaired by CTIP or BRCA1 depletion, while it is accelerated after down-regulation of DNA-PKcs and 53BP1, two DSB repair key factors. In conclusion, the method we describe here can be used to study DSB repair mechanisms, with direct utility for molecularly optimising the knock-out/in outcomes in genome manipulation.


Subject(s)
CRISPR-Associated Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA/metabolism , Polymerase Chain Reaction/methods , Recombinational DNA Repair , CRISPR-Associated Proteins/pharmacology , CRISPR-Associated Proteins/toxicity , Cell Line , DNA/drug effects , Gene Editing , Humans , Kinetics
14.
J Pharm Biomed Anal ; 156: 8-15, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29704772

ABSTRACT

The aim of the present work has been the mass spectrometry characterization of the Nimotuzumab (NIM) antibody chemically modified with the bifunctional chelating agent para-S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza cyclododecanetetraacetic acid (p-SCN-Bn-DOTA). The conjugate, upon labeling with the pure ß--emitter 90Y3+, could represent a promising candidate as radiotracer for an innovative radio-guided surgery (RGS) technique, developed and patented by researchers of our group, which uses a probe system for intraoperative detection of tumor residues exploiting the selective uptake of ß--emitting tracers. The results reported in this study show that multiple DOTA molecules bind to lysine residues of both light and heavy chains of the antibody and, probably, some of them are linked to the variable region of antibody. Moreover, the new mass spectrometric analysis highlights the presence of unreacted NIM in the final product. The information obtained by this work is of fundamental importance in the perspective to utilize this conjugate as a radiocompound after its labeling with 90Y3+ radioisotope. Indeed, the conjugation efficiency and the presence of unreacted NIM affect the specific activity of the final radiotracer which binds specific receptor.


Subject(s)
Antibodies, Monoclonal, Humanized/analysis , Chelating Agents/chemistry , Heterocyclic Compounds/chemistry , Immunoconjugates/analysis , Isothiocyanates/chemistry , Surgery, Computer-Assisted/methods , Antibodies, Monoclonal, Humanized/chemistry , Immunoconjugates/chemistry , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Radioactive Tracers , Yttrium Radioisotopes
15.
Methods Mol Biol ; 1672: 119-129, 2018.
Article in English | MEDLINE | ID: mdl-29043621

ABSTRACT

The nucleolytic degradation of the 5'-ending strand of a Double-Strand DNA break (DSB) is necessary to initiate homologous recombination to correctly repair the break. This process is called DNA end resection and it is finely regulated to prevent genome rearrangements. Here, we describe a protocol to quantify DSB resection rate by qPCR, which could be applied to every organisms whenever the break site and its flanking region sequences are known.


Subject(s)
DNA Breaks, Double-Stranded , Real-Time Polymerase Chain Reaction , Computational Biology/methods , DNA, Fungal , Real-Time Polymerase Chain Reaction/methods , Yeasts/genetics
16.
J Cell Biol ; 216(3): 623-639, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28228534

ABSTRACT

Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1-TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair.


Subject(s)
Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Nuclear Proteins/genetics , Recombinational DNA Repair/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , DNA Damage/genetics , Fungal Proteins/genetics , HEK293 Cells , Humans , S Phase/genetics , Yeasts
17.
Cell Cycle ; 15(21): 2906-2919, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27565373

ABSTRACT

Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Instability , Chromosomes, Fungal/metabolism , DNA Damage , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Adenoviridae/metabolism , Amino Acid Sequence , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/chemistry , DNA Breaks, Double-Stranded , DNA Repair , Gene Rearrangement , Genomic Instability , Microbial Viability , Models, Biological , Mutant Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Spindle Poles/metabolism , Telomere/metabolism , Threonine/metabolism
18.
Nucleic Acids Res ; 44(2): 669-82, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26490958

ABSTRACT

The DNA damage checkpoint pathway is activated in response to DNA lesions and replication stress to preserve genome integrity. However, hyper-activation of this surveillance system is detrimental to the cell, because it might prevent cell cycle re-start after repair, which may also lead to senescence. Here we show that the scaffold proteins Slx4 and Rtt107 limit checkpoint signalling at a persistent double-strand DNA break (DSB) and at uncapped telomeres. We found that Slx4 is recruited within a few kilobases of an irreparable DSB, through the interaction with Rtt107 and the multi-BRCT domain scaffold Dpb11. In the absence of Slx4 or Rtt107, Rad9 binding near the irreparable DSB is increased, leading to robust checkpoint signalling and slower nucleolytic degradation of the 5' strand. Importantly, in slx4Δ sae2Δ double mutant cells these phenotypes are exacerbated, causing a severe Rad9-dependent defect in DSB repair. Our study sheds new light on the molecular mechanism that coordinates the processing and repair of DSBs with DNA damage checkpoint signalling, preserving genome integrity.


Subject(s)
DNA Breaks, Double-Stranded , Endodeoxyribonucleases/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Camptothecin/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endonucleases/genetics , Endonucleases/metabolism , Methyl Methanesulfonate/pharmacology , Mutation , Nuclear Proteins/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Telomere/genetics , Telomere/metabolism , Topoisomerase I Inhibitors/pharmacology
19.
PLoS Genet ; 11(1): e1004928, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569305

ABSTRACT

The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5'-to-3' resection of Double-Strand DNA Breaks (DSBs). Extended 3' single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.


Subject(s)
Cell Cycle Proteins/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Homologous Recombination/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , DNA, Single-Stranded/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Exodeoxyribonucleases/metabolism , Mutation , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
20.
Proc Natl Acad Sci U S A ; 108(33): 13647-52, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21808022

ABSTRACT

UV light induces DNA lesions, which are removed by nucleotide excision repair (NER). Exonuclease 1 (EXO1) is highly conserved from yeast to human and is implicated in numerous DNA metabolic pathways, including repair, recombination, replication, and telomere maintenance. Here we show that hEXO1 is involved in the cellular response to UV irradiation in human cells. After local UV irradiation, fluorescent-tagged hEXO1 localizes, together with NER factors, at the sites of damage in nonreplicating cells. hEXO1 accumulation requires XPF-dependent processing of UV-induced lesions and is enhanced by inhibition of DNA repair synthesis. In nonreplicating cells, depletion of hEXO1 reduces unscheduled DNA synthesis after UV irradiation, prevents ubiquitylation of histone H2A, and impairs activation of the checkpoint signal transduction cascade in response to UV damage. These findings reveal a key role for hEXO1 in the UV-induced DNA damage response linking NER to checkpoint activation in human cells.


Subject(s)
DNA Repair Enzymes/metabolism , DNA Repair , Exodeoxyribonucleases/metabolism , Ultraviolet Rays/adverse effects , Cell Cycle Proteins/metabolism , Cell Line , DNA Damage , Histones/metabolism , Humans , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...