Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Joint Surg Am ; 104(6): 497-503, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35041629

ABSTRACT

BACKGROUND: Next-generation DNA sequencing (NGS) detects bacteria-specific DNA corresponding to the 16S ribosomal RNA gene and can identify bacterial presence with greater accuracy than traditional culture methods. The clinical relevance of these findings is unknown. The purpose of the present study was to compare the results from bacterial culture and NGS in order to characterize the potential use of NGS in orthopaedic trauma patients. METHODS: A prospective cohort study was performed at a single academic, level-I trauma center. Three patient groups were enrolled: (1) patients undergoing surgical treatment of acute closed fractures (presumed to have no bacteria), (2) patients undergoing implant removal at the site of a healed fracture without infection, and (3) patients undergoing a first procedure for the treatment of a fracture nonunion who might or might not have subclinical infection. Surgical site tissue was sent for culture and NGS. The proportions of culture and NGS positivity were compared among the groups. The agreement between culture and NGS results was assessed with use of the Cohen kappa statistic. RESULTS: Bacterial cultures were positive in 9 of 111 surgical sites (110 patients), whereas NGS was positive in 27 of 111 surgical sites (110 patients). Significantly more cases were positive on NGS as compared with culture (24% vs. 8.1%; p = 0.001), primarily in the acute closed fracture group. No difference was found in terms of the percent positivity of NGS when comparing the acute closed fracture, implant removal, and nonunion groups. With respect to bacterial identification, culture and NGS agreed in 73% of cases (κ = 0.051; 95% confidence interval, -0.12 to 0.22) indicating only slight agreement compared with expected chance agreement of 50%. CONCLUSIONS: NGS identified bacterial presence more frequently than culture, but with only slight agreement between culture and NGS. It is possible that the increased frequency of bacterial detection with molecular methods is reflective of biofilm presence on metal or colonization with nonpathogenic bacteria, as culture methods have selection pressure posed by restrictive, artificial growth conditions and there are low metabolic activity and replication rates of bacteria in biofilms. Our data suggest that NGS should not currently substitute for or complement conventional culture in orthopaedic trauma cases with low suspicion of infection. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Fractures, Closed , Orthopedics , Bacteria/genetics , DNA, Bacterial/genetics , Humans , Prospective Studies , Sequence Analysis, DNA
2.
Infect Immun ; 88(1)2019 12 17.
Article in English | MEDLINE | ID: mdl-31712267

ABSTRACT

Staphylococcus aureus is a causative agent of chronic biofilm-associated infections that are recalcitrant to resolution by the immune system or antibiotics. To combat these infections, an antistaphylococcal, biofilm-specific quadrivalent vaccine against an osteomyelitis model in rabbits has previously been developed and shown to be effective at eliminating biofilm-embedded bacterial populations. However, the addition of antibiotics was required to eradicate remaining planktonic populations. In this study, a planktonic upregulated antigen was combined with the quadrivalent vaccine to remove the need for antibiotic therapy. Immunization with this pentavalent vaccine followed by intraperitoneal challenge of BALB/c mice with S. aureus resulted in 16.7% and 91.7% mortality in pentavalent vaccine and control groups, respectively (P < 0.001). Complete bacterial elimination was found in 66.7% of the pentavalent cohort, while only 8.3% of the control animals cleared the infection (P < 0.05). Further protective efficacy was observed in immunized rabbits following intramedullary challenge with S. aureus, where 62.5% of the pentavalent cohort completely cleared the infection, versus none of the control animals (P < 0.05). Passive immunization of BALB/c mice with serum IgG against the vaccine antigens prior to intraperitoneal challenge with S. aureus prevented mortality in 100% of mice and eliminated bacteria in 33.3% of the challenged mice. These results demonstrate that targeting both the planktonic and biofilm stages with the pentavalent vaccine or the IgG elicited by immunization can effectively protect against S. aureus infection.


Subject(s)
Antigens, Bacterial/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/immunology , Staphylococcus aureus/immunology , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Bacterial/immunology , Disease Models, Animal , Immunization, Passive , Immunoglobulin G/administration & dosage , Immunoglobulin G/immunology , Mice, Inbred BALB C , Rabbits , Staphylococcal Vaccines/administration & dosage , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...