Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 326(3): E366-E381, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38197792

ABSTRACT

Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.


Subject(s)
Cumulus Cells , Proteomics , Pregnancy , Female , Animals , Mice , Cumulus Cells/metabolism , Oocytes/metabolism , Cell Communication , Embryonic Development , In Vitro Oocyte Maturation Techniques , Mammals
2.
Aging Cell ; 22(12): e14027, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009412

ABSTRACT

The NAD+ -dependent deacylase family of sirtuin enzymes have been implicated in biological ageing, late-life health and overall lifespan, though of these members, a role for sirtuin-2 (SIRT2) is less clear. Transgenic overexpression of SIRT2 in the BubR1 hypomorph model of progeria can rescue many aspects of health and increase overall lifespan, due to a specific interaction between SIRT2 and BubR1 that improves the stability of this protein. It is less clear whether SIRT2 is relevant to biological ageing outside of a model where BubR1 is under-expressed. Here, we sought to test whether SIRT2 over-expression would impact the overall health and lifespan of mice on a nonprogeroid, wild-type background. While we previously found that SIRT2 transgenic overexpression prolonged female fertility, here, we did not observe any additional impact on health or lifespan, which was measured in both male and female mice on standard chow diets, and in males challenged with a high-fat diet. At the biochemical level, NMR studies revealed an increase in total levels of a number of metabolites in the brain of SIRT2-Tg animals, pointing to a potential impact in cell composition; however, this did not translate into functional differences. Overall, we conclude that strategies to enhance SIRT2 protein levels may not lead to increased longevity.


Subject(s)
Longevity , Sirtuin 2 , Animals , Female , Male , Mice , Aging/genetics , Animals, Genetically Modified/metabolism , Brain/metabolism , Longevity/genetics , Sirtuin 2/genetics , Sirtuin 2/metabolism
3.
Genes (Basel) ; 14(3)2023 03 16.
Article in English | MEDLINE | ID: mdl-36980999

ABSTRACT

Ancient anatomically modern humans (AMHs) encountered other archaic human species, most notably Neanderthals and Denisovans, when they left Africa and spread across Europe and Asia ~60,000 years ago. They interbred with them, and modern human genomes retain DNA inherited from these interbreeding events. High quality (high coverage) ancient human genomes have recently been sequenced allowing for a direct estimation of individual heterozygosity, which has shown that genetic diversity in these archaic human groups was very low, indicating low population sizes. In this study, we analyze ten ancient human genome-wide data, including four sequenced with high-coverage. We screened these ancient genome-wide data for pathogenic mutations associated with monogenic diseases, and established unusual aggregation of pathogenic mutations in individual subjects, including quadruple homozygous cases of pathogenic variants in the PAH gene associated with the condition phenylketonuria in a ~120,000 years old Neanderthal. Such aggregation of pathogenic mutations is extremely rare in contemporary populations, and their existence in ancient humans could be explained by less significant clinical manifestations coupled with small community sizes, leading to higher inbreeding levels. Our results suggest that pathogenic variants associated with rare diseases might be the result of introgression from other archaic human species, and archaic admixture thus could have influenced disease risk in modern humans.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Infant, Newborn , Neanderthals/genetics , Rare Diseases/genetics , Hominidae/genetics , Genome, Human , DNA
4.
PLoS One ; 17(6): e0269628, 2022.
Article in English | MEDLINE | ID: mdl-35749392

ABSTRACT

Genetic disease burden in ancient communities has barely been evaluated despite an ever expanding body of ancient genomes becoming available. In this study, we inspect 2729 publicly available ancient genomes (100 BP-52000 BP) for the presence of pathogenic variants in 32643 disease-associated loci. We base our subsequent analyses on 19 variants in seven genes-PAH, EDAR, F11, HBB, LRRK2, SLC12A6 and MAOA, associated with monogenic diseases and with well-established pathogenic impact in contemporary populations. We determine 230 homozygote genotypes of these variants in the screened 2729 ancient DNA samples. Eleven of these are in the PAH gene (126 ancient samples in total), a gene associated with the condition phenylketonuria in modern populations. The variants examined seem to show varying dynamics over the last 10000 years, some exhibiting a single upsurge in frequency and subsequently disappearing, while others maintain high frequency levels (compared to contemporary population frequencies) over long time periods. The geographic distribution and age of the ancient DNA samples with established pathogenic variants suggests multiple independent origin of these variants. Comparison of estimates of the geographic prevalence of these variants from ancient and contemporary data show discontinuity in their prevalence and supports their recurrent emergence. The oldest samples in which a variant is established might give an indication of their age and place origin, and an EDAR gene pathogenic variant was established in a sample estimated to be 33210-32480 calBCE. Knowledge about the historical prevalence of variants causing monogenic disorders provides insight on their emergence, dynamics and spread.


Subject(s)
Phenylketonurias , Symporters , DNA, Ancient , Gene Frequency , Genotype , Humans
5.
Reproduction ; 161(2): 215-226, 2021 02.
Article in English | MEDLINE | ID: mdl-33320829

ABSTRACT

Ovarian tissue cryopreservation and future transplantation is the only strategy to preserve the fertility of young female adolescent and prepubertal patients. The primary challenge to ovarian graft longevity is the substantial loss of primordial follicles during the period of ischaemia post-transplantation. Nicotinamide mononucleotide (NMN), a precursor of the essential metabolite NAD+, is known to reduce ischaemic damage. Therefore, the objective of the current study was to assess the impact of short- and long-term NMN administration on follicle number and health following ovarian tissue transplantation. Hemi-ovaries from C57Bl6 mice (n = 8-12/group) were transplanted under the kidney capsule of bilaterally ovariectomised severe combined immunodeficient (SCID) mice. Recipient mice were administered either normal drinking water or water supplemented with NMN (2 g/L) for either 14 or 56 days. At the end of each treatment period, ovarian transplants were collected. There was no effect of NMN on the resumption of oestrous or length of oestrous cycles. Transplantation significantly reduced the total number of follicles with the greatest impact observed at the primordial follicle stage. We report that NMN did not prevent this loss. While NMN did not significantly impact the proportion of apoptotic follicles, NMN normalised PCNA expression at the primordial and intermediate stages but not at later stages. In conclusion, NMN administration did not prevent ovarian follicle loss under the conditions of this study.


Subject(s)
Nicotinamide Mononucleotide , Ovarian Follicle , Adolescent , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Ovary
6.
Cell Rep ; 30(6): 1670-1681.e7, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049001

ABSTRACT

Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals.


Subject(s)
Fertility/genetics , NAD/metabolism , Aging , Animals , Female , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...