Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000479

ABSTRACT

It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.


Subject(s)
Biomarkers , Central Nervous System Diseases , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/therapy , Central Nervous System Diseases/diagnosis , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/diagnosis
2.
J Neurovirol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935226

ABSTRACT

After the Zika virus (ZIKV) epidemic in Brazil, ZIKV infections were linked to damage to the central nervous system (CNS) and congenital anomalies. Due to the virus's ability to cross the placenta and reach brain tissue, its effects become severe, leading to Congenital Zika Syndrome (CZS) and resulting in neuroinflammation, microglial activation, and secretion of neurotoxic factors. The presence of ZIKV triggers an inadequate fetal immune response, as the fetus only has the protection of maternal antibodies of the Immunoglobulin G (IgG) class, which are the only antibodies capable of crossing the placenta. Because of limited understanding regarding the long term consequences of ZIKV infection and the involvement of maternal antibodies, this study sought to assess the impact of the ZIKV + IgG⁺complex on murine microglial cells. The cells were exposed to ZIKV, IgG antibodies, and the ZIKV + IgG⁺complex for 24 and 72 h. Treatment-induced cytotoxic effects were evaluated using the cell viability assay, oxidative stress, and mitochondrial membrane potential. The findings indicated that IgG antibodies exhibit cytotoxic effects on microglia, whether alone or in the presence of ZIKV, leading to compromised cell viability, disrupted mitochondrial membrane potential, and heightened oxidative damage. Our conclusion is that IgG antibodies exert detrimental effects on microglia, triggering their activation and potentially disrupting the creation of a neurotoxic environment. Moreover, the presence of antibodies may correlate with an elevated risk of ZIKV-induced neuroinflammation, contributing to long-term CNS damage.

3.
Am J Cancer Res ; 14(5): 1999-2019, 2024.
Article in English | MEDLINE | ID: mdl-38859825

ABSTRACT

The effects of short-chain fatty acids (SCFAs) have been explored against cancer due to the crosstalk between gut microbiota alterations and the immune system as a crucial role in cancer development. We evaluated the SCFAs effects in both in vitro and in vivo breast cancer models. In vitro, the SCFAs displayed contrasting effects on viability index, according to the evaluation of breast cancer cells with different phenotypes, human MCF-7, SK-BR-3, MDA-MD-231, or the mouse 4T1 lineage. Acetate displayed minimal effects at concentrations up to 100 mM. Alternatively, propionate increases or reduces cell viability depending on the concentration. Butyrate and valerate showed consistent time- and concentration-dependent effects on the viability of human or mouse breast cancer cells. The selective FFA2 4-CMTB or FFA3 AR420626 receptor agonists failed to overtake the SCFA actions, except by modest inhibitory effects on MDA-MB-231 and 4T1 cell viability. The FFA2 CATPB or FFA3 and ß-hydroxybutyrate receptor antagonists lacked significant activity on human cell lines, although CATPB reduced 4T1 cell viability. Butyrate significantly affected cell morphology, clonogenicity, and migration, according to the evaluation of MDA-MB-231 and 4T1 cells. A preliminary examination of in vivo oral effects of butyrate, propionate, or valerate, dosed in prophylactic or therapeutic regimens, on several parameters evaluated in an orthotopic breast cancer model showed a reduction of lung metastasis in post-tumor induction butyrate-treated mice. Overall, the present results indicate that in vitro effects of SCFAs did not rely on FFA2 or FFA3 receptor activation, and they were not mirrored in vivo, at least at the tested conditions. Overall, the present results indicate potential in vitro inhibitory effects of SCFAs in breast cancer, independent of FFA2 or FFA3 receptor activation, and, in the metastatic breast cancer model, the butyrate-dosed therapeutic regimen reduced the number of lung metastases.

4.
Rev. bras. cir. plást ; 39(2): 1-7, abr.jun.2024. ilus
Article in English, Portuguese | LILACS-Express | LILACS | ID: biblio-1561956

ABSTRACT

Introdução: O polimetilmetacrilato é um produto de preenchimento permanente. A injeção deste material na face pode levar a complicações. O objetivo deste estudo é determinar em uma série de casos o tempo mediano de ocorrência de complicações, as áreas mais comprometidas, os tipos de complicações e tratamentos mais realizados. Método: Foram estudados 209 casos de pacientes portadores de complicações relacionadas ao uso de polimetilmetacrilato na face que buscaram tratamento entre o período de janeiro de 2000 a junho de 2021. Os dados analisados foram sexo, idade, número de injeções, momento da aplicação, intervalo de tempo até surgir a complicação, tipo de complicação, região comprometida e tratamento realizado. Resultados: A idade média dos pacientes foi de 45 anos (23 a 79 anos). Destes, 172 eram mulheres e 37 homens. O número de aplicações variou de 1 a 5. O tempo mediano de surgimento de complicações foi de 71 meses. As regiões mais comprometidas foram a malar, em 102 pacientes; mandibular, em 100; e zigomática, em 91. Granuloma foi observado em 135 pacientes; edema, em 120; e inflamação, em 78. O tratamento mais realizado foi a injeção de corticoide, em 111 pacientes, seguido de remoção cirúrgica, em 40. Conclusão: Os resultados podem servir como base de conhecimento para uma melhor compreensão das complicações com o uso de polimetilmetacrilato na face.


Introduction: Polymethylmethacrylate is a permanent filler product. Injecting this material into the face can lead to complications. The objective of this study is to determine in a series of cases the median time for complications to occur, the most affected areas, the types of complications, and the treatments most performed. Method: 209 cases of patients with complications related to the use of polymethyl methacrylate on the face who sought treatment between the period of January 2000 and June 2021 were studied. The data analyzed were gender, age, number of injections, moment of application, interval time until the complication arises, type of complication, affected region, and treatment performed. Results: The average age of patients was 45 years (23 to 79 years). Of these, 172 were women and 37 men. The number of applications ranged from 1 to 5. The median time for complications to appear was 71 months. The most affected regions were the malar, in 102 patients; mandibular, in 100; and zygomatic, in 91. Granuloma was observed in 135 patients; edema, in 120; and inflammation, in 78. The most common treatment was corticosteroid injection, in 111 patients, followed by surgical removal, in 40. Conclusion: The results can serve as a knowledge base for a better understanding of complications with the use of polymethylmethacrylate in the face.

5.
Cells ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727281

ABSTRACT

This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Organoids/pathology , Humans , Induced Pluripotent Stem Cells/cytology , Animals , Neuropathology/methods , Regenerative Medicine/methods , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/pathology , Cell Differentiation
6.
Oncol Lett ; 27(4): 176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38464338

ABSTRACT

Glioblastoma (GBM) is one of the most common types of brain tumor in adults. Despite the availability of treatments for this disease, GBM remains one of the most lethal and difficult types of tumors to treat, and thus, a majority of patients die within 2 years of diagnosis. Infection with Zika virus (ZIKV) inhibits cell proliferation and induces apoptosis, particularly in developing neuronal cells, and thus could potentially be considered an alternative for GBM treatment. In the present study, two GBM cell lines (U-138 and U-251) were infected with ZIKV at different multiplicities of infection (0.1, 0.01 and 0.001), and cell viability, migration, adhesion, induction of apoptosis, interleukin levels and CD14/CD73 cell surface marker expression were analyzed. The present study demonstrated that ZIKV infection promoted loss of cell viability and increased apoptosis in U-138 cells, as measured by MTT and triplex assay, respectively. Changes in cell migration, as determined by wound healing assay, were not observed; however, the GBM cell lines exhibited an increase in cell adhesion when compared with non-tumoral cells (Vero). The Luminex immunoassay showed a significant increase in the expression levels of IL-4 specifically in U-251 cells (MOI 0.001) following exposure to ZIKV. There was no significant change in the expression levels of IFN-γ upon ZIKV infection in the cell lines tested. Furthermore, a marked increase in the percentage of cells expressing the CD14 surface marker was observed in both GBM cell lines compared with in Vero cells; and significantly increased CD73 expression was observed particularly in U-251 cells, when compared with uninfected cells. These findings indicate that ZIKV infection could lead to reduced cell viability, elevated CD73 expression, improved cellular adherence, and higher rates of apoptosis in glioblastoma cells. Further studies are required to explore the potential use of ZIKV in the treatment of GBM.

7.
Epilepsy Behav ; 150: 109565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070410

ABSTRACT

Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.


Subject(s)
Focal Cortical Dysplasia , Malformations of Cortical Development , Adult , Child , Humans , Phosphatidylinositol 3-Kinases , Brain/pathology , Seizures/pathology , Treatment Outcome , Magnetic Resonance Imaging/methods , Biomarkers , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Retrospective Studies
8.
BMC Neurol ; 23(1): 338, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37749503

ABSTRACT

BACKGROUND: Focal cortical dysplasia (FCD) is a malformation of cortical development that causes medical refractory seizures, and one of the main treatments may be surgical resection of the affected area of the brain. People affected by FCD may present with seizures of variable severity since childhood. Despite many medical treatments available, only surgery can offer cure. The pathophysiology of the disease is not yet understood; however, it is known that several gene alterations may play a role. The WNT/ß-catenin pathway is closely related to the control and balance of cell proliferation and differentiation in the central nervous system. The aim of this study was to explore genes related to the WNT/ß-catenin pathway in lesional and perilesional brain tissue in patients with FCD type II. METHODS: Dysplastic and perilesional tissue from the primary dysplastic lesion of patients with FCD type IIa were obtained from two patients who underwent surgical treatment. The analysis of the relative expression of genes was performed by a qRT-PCR array (super array) containing 84 genes related to the WNT pathway. RESULTS: Our results suggest the existence of molecular alteration in some genes of the WNT pathway in tissue with dysplastic lesions and of perilesional tissue. We call this tissue of normal-appearing adjacent cortex (NAAC). Of all genes analyzed, a large number of genes show similar behavior between injured, perilesional and control tissues. However, some genes have similar characteristics between the perilesional and lesional tissue and are different from the control brain tissue, presenting the perilesional tissue as a molecularly altered material. CONCLUSION: Our results suggest that the perilesional area after surgical resection of tissue with cortical dysplasia presents molecular changes that may play a role in the recurrence of seizures in these patients. The perilesional tissue should receive expanded attention beyond the somatic mutations described and associated with FCD, such as mTOR, for example, to new signaling pathways that may play a crucial role in seizure recurrence.


Subject(s)
Drug Resistant Epilepsy , Focal Cortical Dysplasia , Humans , Child , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , Wnt Signaling Pathway/genetics , beta Catenin , Seizures
9.
Colloids Surf B Biointerfaces ; 228: 113417, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356139

ABSTRACT

Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP). The samples were characterized regarding their physicochemical properties and the cumulative release of rifampicin (RIMP), investigated at different pH values. Additionally, differentiated osteoblasts from mesenchymal cells were used for cell viability and qRT-PCR analysis. Antibacterial properties of each surface treatment were investigated against Staphylococcus epidermidis. TNTsRIMP demonstrated controlled drug release for up to 7 days in neutral pH environments. Osteogenic cell cultures indicated that all the evaluated surfaces showed biocompatibility. The TNTs group revealed up-regulated values for bone-related gene quantification in 7 days, followed by the TNTsRIMP group. Furthermore, the antibiotic-functionalized surface revealed effectiveness to inhibit S. epidermidis and stimulate promising conditions for osteogenic cell behavior. Characteristics such as nanomorphology and hydrophilicity were determinants for the up-regulated quantification of osteogenic biomarkers related to early bone maturation, encouraging application in intra-osseous implant surfaces; in addition, antibiotic-functionalized surfaces demonstrated significant higher antibacterial properties compared to the other groups. Our findings suggest that polymeric-antibiotic-loaded coating might be applied for the prevention of early infections, favoring its application in multifunctional surfaces for intra- and/or trans-mucosal components of dental implants, while, hydrophilic nanotextured surfaces promoted optimistic properties to stimulate early bone-related cell responses, favoring its application in bone-anchored surfaces.


Subject(s)
Anti-Bacterial Agents , Dental Implants , Anti-Bacterial Agents/pharmacology , Rifampin/pharmacology , Surface Properties , Cell Differentiation , Titanium/pharmacology , Titanium/chemistry , Osseointegration
10.
Brain Behav Immun Health ; 28: 100578, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36686624

ABSTRACT

With the outbreak of coronavirus disease 2019 (COVID-19), the whole world was impacted by a pandemic. With the passage of time and knowledge about the dynamics and viral propagation of this disease, the short-, medium- and long-term repercussions are still being discovered. During this period, it has been learned that various manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect the nervous system. In recent months, a variety of studies and case reports have proposed an association between COVID-19 and Guillain-Barré syndrome (GBS). The present work aims to systematically review the publications available to date to verify the relationship between these two pathologies and the characteristics of post-COVID GBS. There were 156 studies included in this work, resulting in a total of 436 patients. The findings show a mean age of the patients of 61,38 years and a male majority. The GBS symptoms began on average 19 days after the onset of COVID-19 infection. Regarding GBS, the main manifestations found included generalized weakness, reflex reduction, facial paresis/paralysis and hypoesthesia. As expected, the most common result in cerebrospinal fluid (CSF) analysis was albuminocytological dissociation. A pattern of blood analysis findings common to all patients was not observed due to non-standardization of case reports. Regarding electrodiagnostic studies, acute inflammatory demyelinating polyneuropathy (AIDP) appeared as the most common subtype of GBS in this study. There have been reports, to a lesser extent, of acute motor axonal neuropathy (AMAN), acute sensorimotor axonal neuropathy (AMSAN), the pharyngeal-cervical-brachial variant (PCB), and Miller-Fisher syndrome (MFS). The GBS treatment used was mainly intravenous immunoglobulin (IVIG) and plasma exchange (PLEX). Therefore, the present study reports a high prevalence of hospitalization and intensive care units ICU admissions, conjecturing a relationship between the development of GBS and the severity of COVID-19. Despite the severity, most patients showed improvement in GBS symptoms after treatment, and their residual symptoms did not include motor involvement. Therefore, the development of GBS seems to be related to COVID-19 infection, as reported by the present systematic review.

11.
Eur Respir J ; 60(6)2022 12.
Article in English | MEDLINE | ID: mdl-36104292

ABSTRACT

BACKGROUND: Patients who present to an emergency department (ED) with respiratory symptoms are often conservatively triaged in favour of hospitalisation. We sought to determine if an inflammatory biomarker panel that identifies the host response better predicts hospitalisation in order to improve the precision of clinical decision making in the ED. METHODS: From April 2020 to March 2021, plasma samples of 641 patients with symptoms of respiratory illness were collected from EDs in an international multicentre study: Canada (n=310), Italy (n=131) and Brazil (n=200). Patients were followed prospectively for 28 days. Subgroup analysis was conducted on confirmed coronavirus disease 2019 (COVID-19) patients (n=245). An inflammatory profile was determined using a rapid, 50-min, biomarker panel (RALI-Dx (Rapid Acute Lung Injury Diagnostic)), which measures interleukin (IL)-6, IL-8, IL-10, soluble tumour necrosis factor receptor 1 (sTNFR1) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1). RESULTS: RALI-Dx biomarkers were significantly elevated in patients who required hospitalisation across all three sites. A machine learning algorithm that was applied to predict hospitalisation using RALI-Dx biomarkers had a mean±sd area under the receiver operating characteristic curve of 76±6% (Canada), 84±4% (Italy) and 86±3% (Brazil). Model performance was 82±3% for COVID-19 patients and 87±7% for patients with a confirmed pneumonia diagnosis. CONCLUSIONS: The rapid diagnostic biomarker panel accurately identified the need for inpatient care in patients presenting with respiratory symptoms, including COVID-19. The RALI-Dx test is broadly and easily applicable across many jurisdictions, and represents an important diagnostic adjunct to advance ED decision-making protocols.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , COVID-19/diagnosis , ROC Curve , Biomarkers , Emergency Service, Hospital , Interleukin-6
12.
Int J Infect Dis ; 123: 58-69, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35760382

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the time in days between symptom onset and first positive real-time reverse transcriptase polymerase chain reaction (RT-PCR) result for COVID-19. METHODS: This systematic review was conducted in the MEDLINE (PubMed), Embase, and Scopus databases using the following descriptors: "COVID-19", "SARS-CoV-2", "coronavirus", "RT-PCR", "real time PCR", and "diagnosis". RESULTS: The included studies were conducted in 31 different countries and reported on a total of 6831 patients. The median age of the participants was 49.95 years. The three most common symptoms were fever, cough, and dyspnea, which affected 4012 (58.68%), 3192 (46.69%), and 2009 patients (29.38%), respectively. Among the 90 included studies, 13 were prospective cohorts, 15 were retrospective cohorts, 36 were case reports, 20 were case series, and six were cross-sectional studies. The overall mean time between symptom onset and positive test result was 6.72 days. Fourteen articles were analyzed separately for the temporal profile of RT-PCR test results; the best performance was on days 22-24, when 98% of test results were positive. CONCLUSION: These findings corroborate the RT-PCR COVID-19 testing practices of some health units. In addition, the most frequently described symptoms of these patients can be considered the initial symptoms of infection and used in decision-making about RT-PCR testing.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Middle Aged , Prospective Studies , RNA-Directed DNA Polymerase , Real-Time Polymerase Chain Reaction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
13.
NPJ Regen Med ; 6(1): 73, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34750382

ABSTRACT

Despite global efforts to establish effective interventions for coronavirus disease 2019 (COVID-19) and its major complications, such as acute respiratory distress syndrome (ARDS), the treatment remains mainly supportive. Hence, identifying an effective and safe therapy for severe COVID-19 is critical for saving lives. A significant number of cell-based therapies have been through clinical investigation. In this study, we performed a systematic review of clinical studies investigating different types of stem cells as treatments for COVID-19 and ARDS to evaluate the safety and potential efficacy of cell therapy. The literature search was performed using PubMed, Embase, and Scopus. Among the 29 studies, there were eight case reports, five Phase I clinical trials, four pilot studies, two Phase II clinical trials, one cohort, and one case series. Among the clinical studies, 21 studies used cell therapy to treat COVID-19, while eight studies investigated cell therapy as a treatment for ARDS. Most of these (75%) used mesenchymal stem cells (MSCs) to treat COVID-19 and ARDS. Findings from the analyzed articles indicate a positive impact of stem cell therapy on crucial immunological and inflammatory processes that lead to lung injury in COVID-19 and ARDS patients. Additionally, among the studies, there were no reported deaths causally linked to cell therapy. In addition to standard care treatments concerning COVID-19 management, there has been supportive evidence towards adjuvant therapies to reduce mortality rates and improve recovery of care treatment. Therefore, MSCs treatment could be considered a potential candidate for adjuvant therapy in moderate-to-severe COVID-19 cases and compassionate use.

14.
Cartilage ; 13(2_suppl): 1077S-1087S, 2021 12.
Article in English | MEDLINE | ID: mdl-34775798

ABSTRACT

OBJECTIVES: This study aimed to evaluate the efficacy of hyaluronic acid in the viability and proliferation profile of human femoral-tibial joint cartilage affected by osteoarthritis using in vitro models of chondrocytes in a 2-dimensional (2D)- and 3-dimensional (3D)-based culture model by spheroids. DESIGN: In vitro study of knee cartilage affected by osteoarthritis that required surgical treatment. Samples were cultured and exposed to hyaluronic acid (100 and 500 µM; intervention group) or vehicle solution. In monolayer or 2D culture, proliferation and cell viability were measured, and nuclear morphometry was analyzed by 4',6'-diamino-2-fenil-indol (DAPI) staining. The 3D-based culture established from the culture of articular cartilage of patients submitted to total knee arthroplasty evaluated the diameter, viability, and fusion ability of the chondrospheres created. RESULTS: Samples from 3 patients resulted in viable cultures, with chondrocyte cells exhibiting a potential for cell proliferation and viability to establish a culture. Hyaluronic acid (100 and 500 µM) improved chondrocyte viability and proliferation up to 72 hours in contact when compared with the control group, and no nuclear irregularities in morphology cell characteristics were observed by DAPI. In the 3D evaluation, hyaluronic acid (500 µM) improved the cellular feedback mechanisms, increasing the survival and maintenance of the chondrospheres after 7 days of analysis, showing the intrinsic capacity of chondrospheres grouped in the attempt to rearrange and reestablish new articular tissue. CONCLUSIONS: The 2D- and 3D-based culture models with hyaluronic acid improved chondrocyte viability and proliferation and demonstrated the ability of freshly formed chondrospheres to undergo fusion when placed together in the presence of hyaluronic acid.


Subject(s)
Cartilage, Articular , Osteoarthritis , Cartilage, Articular/surgery , Cell Proliferation , Chondrocytes , Humans , Hyaluronic Acid/pharmacology
15.
Article in English | MEDLINE | ID: mdl-34712404

ABSTRACT

Background. Direct pulp capping is a method designed to preserve the exposed dental pulp. Due to good biological, physical, and mechanical properties, new versions of calcium silicate-based materials have been developed as pulp capping materials. The present study aimed to evaluate the cytotoxic effects of four calcium silicate-based pulp capping materials, of which the Bio-C Repair Íon+ is still in an experimental phase. Methods. Biodentine, MTA Repair HP, Bio-C Repair, and Bio-C Repair Íon+ cements were dispensed in a metallic matrix to produce 125-mm3 specimens, which were immersed in Dulbecco's Modified Eagle Medium (DMEM) to obtain extracts. NIH 3T3 cells were cultured and exposed to the extracts for 24 hours and seven days. Cell viability was assessed by the methyl tetrazolium test (MTT). The mean values for the experimental and control groups (without treatment) were compared by analysis of variance (ANOVA) and post hoc Tukey tests, considering a significance level of 5%. Results. All the tested materials demonstrated a reduction in cell viability (P < 0.05). According to ISO 10993-5: 2009 (E), Bio-C Repair Íon+ exhibited mild and moderate cytotoxicity in the 24- hour and 7-day analyses, respectively. Bio-C Repair and Biodentine showed mild cytotoxicity, and MTA Repair HP exhibited moderate cytotoxicity at both intervals. Conclusion. The highest cell viability was demonstrated by Biodentine, MTA, and Repair HP, in descending order. Bio-C Repair and Bio-C Repair Íon+ showed moderate cytotoxicity, similar to MTA Repair HP in the 7-day analysis.

16.
Mol Biol Rep ; 48(4): 3649-3663, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33765252

ABSTRACT

Neurogenesis was believed to end after the period of embryonic development. However, the possibility of obtaining an expressive number of cells with functional neuronal characteristics implied a great advance in experimental research. New techniques have emerged to demonstrate that the birth of new neurons continues to occur in the adult brain. Two main rich sources of these cells are the subventricular zone (SVZ) and the subgranular zone of the hippocampal dentate gyrus (SGZ) where adult neural stem cells (aNSCs) have the ability to proliferate and differentiate into mature cell lines. The cultivation of neurospheres is a method to isolate, maintain and expand neural stem cells (NSCs) and has been used extensively by several research groups to analyze the biological properties of NSCs and their potential use in injured brains from animal models. Throughout this review, we highlight the areas where this type of cell culture has been applied and the advantages and limitations of using this model in experimental studies for the neurological clinical scenario.


Subject(s)
Brain Diseases/metabolism , Neurogenesis , Primary Cell Culture/methods , Spheroids, Cellular/cytology , Animals , Brain Diseases/pathology , Humans , Spheroids, Cellular/metabolism , Spheroids, Cellular/physiology
17.
Front Med (Lausanne) ; 8: 624166, 2021.
Article in English | MEDLINE | ID: mdl-33681253

ABSTRACT

Background: Pregnant women are susceptible to the novel coronavirus (SARS-CoV-2), and the consequences for the fetus are still uncertain. Here, we present a case of a pregnant woman with subclinical hypothyroidism and a plasminogen activator inhibitor type 1 (PAI-1) 4G/5G polymorphism who was infected with SARS-CoV-2 at the end of the third trimester of pregnancy, with unexpected evolution of death of the newborn 4 days postpartum. Methods: Nested PCR was performed to detect the virus, followed by ssDNA sequencing. Results: Transplacental transmission of SARS-CoV-2 can cause placental inflammation, ischemia, and neonatal viremia, with complications such as preterm labor and damage to the placental barrier in patients with PAI-1 4G/5G polymorphism. Conclusion: We showed a newborn with several damages potentially caused due to the PAI-1 polymorphisms carried by the mother infected with SARS-CoV-2 during pregnancy.

18.
J Neuroimmunol ; 350: 577435, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33189062

ABSTRACT

INTRODUCTION: Multiple Sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Currently, several protocols are described for the different phases of MS. In this longitudinal study, we aim to quantify the concentration of plasma cytokines of MS patients treated with Fingolimod alone or after Glatiramer Acetate (GA) or Interferon-beta (IFN-ß), in order to compeer both treatments and describes if it is possible to use them as biomarkers. OBJECTIVE: Compare the two different types of drug treatment and describes possible immune biomarkers in RRMS patients treated with Fingolimod alone or after GA or IFN-ß. MATERIALS AND METHODS: This is a controlled, non-randomized clinical trial. Plasma concentrations of IL-31, sCD40L and nine others cytokines were evaluated in two groups of patients with a one-year follow-up. Group 1 (n = 12): RRMS patients treated with GA or IFN-ß for at least six months before the study who changed therapy to Fingolimod after six months, and Group 2 (n = 12): naïve RRMS patients who started treatment with Fingolimod. We used ANOVA two-way to analyze the cytokines and Spearman coefficient to evaluate the correlation. RESULTS: Although Group 2 started with a greater number of relapses per disease duration, Fingolimod treatment was effective in decreasing this parameter, as well as EDSS over 12 months. However, the treatment with GA or IFN-ß on Group 1 showed a tendency to increase the number of relapses after 6 months of follow-up, which decrease when the therapy was changed to Fingolimod. After the evaluation of 11 cytokines in one year, we found that IL-31 and sCD40L were the biomarkers that demonstrated a more difference when compared to the classical ones, following the clinical pattern over the treatment period. CONCLUSIONS: Our study describes the existence of two promising plasmatic biomarkers (IL-31 and sCD40L), which reduced plasmatic levels in RRMS patients followed the treatment time of Fingolimod, despite that more studies are needed to prove their efficiency.

19.
Brain Struct Funct ; 225(9): 2799-2813, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33128125

ABSTRACT

Temporal lobe epilepsy is the most common form of intractable epilepsy in adults. More than 30% of individuals with epilepsy have persistent seizures and have drug-resistant epilepsy. Based on our previous findings, treatment with bone marrow mononuclear cells (BMMC) could interfere with early and chronic phase epilepsy in rats and in clinical settings. In this pilocarpine-induced epilepsy model, animals were randomly assigned to two groups: control (Con) and epileptic pre-treatment (Ep-pre-t). The latter had status epilepticus (SE) induced through pilocarpine intraperitoneal injection. Later, seizure frequency was assessed using a video-monitoring system. Ep-pre-t was further divided into epileptic treated with saline (Ep-Veh) and epileptic treated with BMMC (Ep-BMMC) after an intravenous treatment with BMMC was done on day 22 after SE. Analysis of neurobehavioral parameters revealed that Ep-BMMC had significantly lower frequency of spontaneous recurrent seizures (SRS) in comparison to Ep-pre-t and Ep-Veh groups. Hippocampus-dependent spatial and non-spatial learning and memory were markedly impaired in epileptic rats, a deficit that was robustly recovered by treatment with BMMC. Moreover, long-term potentiation-induced synaptic remodeling present in epileptic rats was restored by BMMC. In addition, BMMC was able to reduce abnormal mossy fiber sprouting in the dentate gyrus. Molecular analysis in hippocampal tissue revealed that BMMC treatment down-regulates the release of inflammatory cytokine tumor necrosis factor-α (TNF-α) and Allograft inflammatory factor-1 (AIF-1) as well as the Rho subfamily of small GTPases [Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac)]. Collectively, delayed BMMC treatment showed positive effects when intravenously infused into chronic epileptic rats.


Subject(s)
Bone Marrow Transplantation , Cognition , Encephalitis/physiopathology , Epilepsy/physiopathology , Epilepsy/psychology , Guanine Nucleotides/antagonists & inhibitors , Recovery of Function , Animals , Behavior, Animal , Bone Marrow Transplantation/methods , Disease Models, Animal , Epilepsy/therapy , Infusions, Intravenous , Long-Term Potentiation , Male , Rats, Wistar
20.
Acta Odontol Latinoam ; 33(2): 82-89, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32920609

ABSTRACT

The aim of this study was to evaluate the degree of conversion, cytotoxicity, solubility and pH of photopolymerizable calciumbased cements submitted to preheating. The degree of conversion was analyzed by Fourier transform infrared, cytotoxicity by the MTT test and solubility through loss of mass. The data were subjected to statistical tests (ANOVA / Tukey's, p<0.05). The photopolymerizable materials showed a low degree of conversion, regardless of preheating. All materials caused a reduction in cell viability at 24 hours and 7 days, with the Dycal (control) being more cytotoxic. Heat had a positive effect on Biocal at 7 days. Dycal is the most soluble material. Heat had no effect on the solubility or pH of the polymerizable materials. It is concluded that photopolymerizable calcium-based cements have a low degree of conversion and are soluble, which results in mild to moderate cytotoxicity.


O objetivo do presente estudo foi avaliar o grau de conversão, citotoxicidade, solubilidade e pH de cimentos à base de cálcio fotopolimerizáveis submetidos a pré-aquecimento. O grau de conversão foi analisado por espectroscopia no infravermelho com transformada de Fourier, a citotoxicidade pelo teste de MTT e a solubilidade através da perda de massa. Os dados foram submetidos a testes estatísticos (ANOVA/Tukey, p<0,05). Os materiais fotopolimerizáveis apresentaram baixo grau de conversão, independente do pré-aquecimento. Todos os materiais causaram redução da viabilidade celular nas análises de 24 horas e 7 dias, sendo que o Dycal (controle) apresentouse mais citotóxico e o calor apresentou efeito positivo sobre o Biocal na análise de 7 dias. O Dycal é o material mais solúvel e o calor não causou efeito na solubilidade e pH dos materiais polimerizáveis. Assim, conclui-se que os cimentos à base de cálcio fotopolimerizáveis apresentam baixo grau de conversão e são solúveis, que resulta em citotoxicidade suave e moderada.


Subject(s)
Calcium Hydroxide/toxicity , Cell Survival/drug effects , Dental Cements/chemistry , Pulp Capping and Pulpectomy Agents/toxicity , Calcium , Calcium Hydroxide/chemistry , Dental Cements/toxicity , Dental Pulp Capping , Humans , Hydrogen-Ion Concentration , Light-Curing of Dental Adhesives , Photochemical Processes , Polymerization , Pulp Capping and Pulpectomy Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...