Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 279: 120307, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37543259

ABSTRACT

Widespread frontoparietal activity is consistently observed in recognition memory tests that compare studied ("target") versus unstudied ("nontarget") responses. However, there are conflicting accounts that ascribe various aspects of frontoparietal activity to mnemonic evidence versus decisional processes. According to Signal Detection Theory, recognition judgments require individuals to decide whether the memory strength of an item exceeds an evidence threshold-the decision criterion-for reporting previously studied items. Yet, most fMRI studies fail to manipulate both memory strength and decision criteria, making it difficult to appropriately identify frontoparietal activity associated with each process. In the current experiment, we manipulated both discriminability and decision criteria across recognition memory and visual detection tests during fMRI scanning to assess how frontoparietal activity is affected by each manipulation. Our findings revealed that maintaining a conservative versus liberal decision criterion drastically affects frontoparietal activity in target versus nontarget response contrasts for both recognition memory and visual detection tests. However, manipulations of discriminability showed virtually no differences in frontoparietal activity in target versus nontarget response or item contrasts. Comparing across task domains, we observed similar modulations of frontoparietal activity across criterion conditions, though the recognition memory task revealed larger activations in both magnitude and spatial extent in these contrasts. Nonetheless, there appears to be some domain specificity in frontoparietal activity associated with the maintenance of a conservative versus liberal criterion. We propose that widespread frontoparietal activity observed in target versus nontarget contrasts is largely attributable to response bias where increased activity may reflect inhibition of a prepotent response, which differs depending on whether a person maintains a conservative versus liberal decision criterion.


Subject(s)
Magnetic Resonance Imaging , Recognition, Psychology , Humans , Recognition, Psychology/physiology , Memory , Judgment , Contrast Media
2.
Patterns (N Y) ; 2(1): 100188, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33506230

ABSTRACT

The fight against COVID-19 is hindered by similarly presenting viral infections that may confound detection and monitoring. We examined person-generated health data (PGHD), consisting of survey and commercial wearable data from individuals' everyday lives, for 230 people who reported a COVID-19 diagnosis between March 30, 2020, and April 27, 2020 (n = 41 with wearable data). Compared with self-reported diagnosed flu cases from the same time frame (n = 426, 85 with wearable data) or pre-pandemic (n = 6,270, 1,265 with wearable data), COVID-19 patients reported a distinct symptom constellation that lasted longer (median of 12 versus 9 and 7 days, respectively) and peaked later after illness onset. Wearable data showed significant changes in daily steps and prevalence of anomalous resting heart rate measurements, of similar magnitudes for both the flu and COVID-19 cohorts. Our findings highlight the need to include flu comparator arms when evaluating PGHD applications aimed to be highly specific for COVID-19.

3.
Ann N Y Acad Sci ; 1359: 47-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26426534

ABSTRACT

A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals.


Subject(s)
Cerebrum/pathology , Cerebrum/physiology , Functional Laterality/physiology , Likelihood Functions , Brain Mapping/methods , Humans , Schizophrenia, Paranoid/diagnosis , Schizophrenia, Paranoid/psychology , Split-Brain Procedure/trends
4.
Front Hum Neurosci ; 8: 839, 2014.
Article in English | MEDLINE | ID: mdl-25374526

ABSTRACT

Converging lines of evidence from diverse research domains suggest that the left and right hemispheres play distinct, yet complementary, roles in inferential reasoning. Here, we review research on split-brain patients, brain-damaged patients, delusional patients, and healthy individuals that suggests that the left hemisphere tends to create explanations, make inferences, and bridge gaps in information, while the right hemisphere tends to detect conflict, update beliefs, support mental set-shifts, and monitor and inhibit behavior. Based on this evidence, we propose that the left hemisphere specializes in creating hypotheses and representing causality, while the right hemisphere specializes in evaluating hypotheses, and rejecting those that are implausible or inconsistent with other evidence. In sum, we suggest that, in the domain of inferential reasoning, the left hemisphere strives to reduce uncertainty while the right hemisphere strives to resolve inconsistency. The hemispheres' divergent inferential reasoning strategies may contribute to flexible, complex reasoning in the healthy brain, and disruption in these systems may explain reasoning deficits in the unhealthy brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...