Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Nano ; 16(10): 16249-16259, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36153997

ABSTRACT

Large-area nanopore drilling is a major bottleneck in state-of-the-art nanoporous 2D membrane fabrication protocols. In addition, high-quality structural and statistical descriptions of as-fabricated porous membranes are key to predicting the corresponding membrane-wide permeation properties. In this work, we investigate Xe-ion focused ion beam as a tool for scalable, large-area nanopore fabrication on atomically thin, free-standing molybdenum disulfide. The presented irradiation protocol enables designing ultrathin membranes with tunable porosity and pore dimensions, along with spatial uniformity across large-area substrates. Fabricated nanoporous membranes are then characterized using scanning transmission electron microscopy imaging, and the observed nanopore geometries are analyzed through a pore-edge detection and analysis script. We further demonstrate that the obtained structural and statistical data can be readily passed on to computational and analytical tools to predict the permeation properties at both individual pore and membrane-wide scales. As an example, membranes featuring angstrom-scale pores are investigated in terms of their emerging water and ion flow properties through extensive all-atom molecular dynamics simulations. We believe that the combination of experimental and analytical approaches presented here will yield accurate physics-based property estimates and thus potentially enable a true function-by-design approach to fabrication for applications such as osmotic power generation and desalination/filtration.

2.
Phys Chem Chem Phys ; 24(33): 19948-19955, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35968925

ABSTRACT

Applying hydrostatic pressure with suspended 2D material thin membranes allows probing the effects of lateral strain on the ion and fluid transport through nanopores. We demonstrate how both permanent and temporary delamination of 2D materials can be induced by pressure and potential differences between the membrane, causing a strong mechanosensitive modulation of ion transport. Our methodology is based on in situ measurements of ionic current and streaming modulation as the supporting membrane is indented or bulged with pressure. We demonstrate how indirect measurements of fluid transport through delaminated MoS2 membranes is achieved through monitoring streaming current and potential. This is combined with TEM images of 2D material membranes before and after aqueous measurements, showing temporary delamination during mechanical or electrical stress. The obtained results allow a better understanding of measurements with supported 2D materials, i.e. avoiding misinterpreting measured data, and could be used to probe how the electrical field and fluid flow at the nanoscale influence the adhesion of supported 2D materials.

3.
Small ; 17(25): e2100777, 2021 06.
Article in English | MEDLINE | ID: mdl-33955694

ABSTRACT

Solid state nanopores are single-molecular devices governed by nanoscale physics with a broad potential for technological applications. However, the control of translocation speed in these systems is still limited. Ionic liquids are molten salts which are commonly used as alternate solvents enabling the regulation of the chemical and physical interactions on solid-liquid interfaces. While their combination can be challenging to the understanding of nanoscopic processes, there has been limited attempts on bringing these two together. While summarizing the state of the art and open questions in these fields, several major advances are presented with a perspective on the next steps in the investigations of ionic-liquid filled nanopores, both from a theoretical and experimental standpoint. By analogy to aqueous solutions, it is argued that ionic liquids and nanopores can be combined to provide new nanofluidic functionalities, as well as to help resolve some of the pertinent problems in understanding transport phenomena in confined ionic liquids and providing better control of the speed of translocating analytes.


Subject(s)
Ionic Liquids , Nanopores , Nanotechnology , Salts , Water
4.
Phys Chem Chem Phys ; 23(8): 4975-4987, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33621304

ABSTRACT

Nanopores are both a tool to study single-molecule biophysics and nanoscale ion transport, but also a promising material for desalination or osmotic power generation. Understanding the physics underlying ion transport through nano-sized pores allows better design of porous membrane materials. Material surfaces can present hydrophobicity, a property which can make them prone to formation of surface nanobubbles. Nanobubbles can influence the electrical transport properties of such devices. We demonstrate an approach which uses hydraulic pressure to probe the electrical transport properties of solid state nanopores. We show how pressure can be used to wet pores, and how it allows control over bubbles or other contaminants in the nanometer scale range normally unachievable using only an electrical driving force. Molybdenum disulfide is then used as a typical example of a 2D material on which we demonstrate wetting and bubble induced nonlinear and linear conductance in the regimes typically used with these experiments. We show that by using pressure one can identify and evade wetting artifacts.

5.
Entropy (Basel) ; 22(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353100

ABSTRACT

Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models. This review aims to highlight ionic Coulomb blockade (ICB)-an effect that is proposed to be the key player of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus, in this perspective, we focus on the most promising approaches that have been reported on the subject. We consider ion confinements of various dimensionalities and highlight the most recent advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with these studies and suggest possible solutions to advance the field further.

6.
Nano Lett ; 20(11): 8089-8095, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33048551

ABSTRACT

Nanopores in solid state membranes are a tool able to probe nanofluidic phenomena or can act as a single molecular sensor. They also have diverse applications in filtration, desalination, or osmotic power generation. Many of these applications involve chemical, or hydrostatic pressure differences which act on both the supporting membrane, and the ion transport through the pore. By using pressure differences between the sides of the membrane and an alternating current approach to probe ion transport, we investigate two distinct physical phenomena: the elastic deformation of the membrane through the measurement of strain at the nanopore, and the growth of ionic current rectification with pressure due to pore entrance effects. These measurements are a significant step toward the understanding of the role of elastic membrane deformation or fluid flow on linear and nonlinear transport properties of nanopores.

7.
Nat Mater ; 19(10): 1043-1044, 2020 10.
Article in English | MEDLINE | ID: mdl-32958867
8.
Nanoscale ; 12(16): 8867-8874, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32255450

ABSTRACT

Room temperature ionic liquids are salts which are molten at or around room temperature without any added solvent or solution. In bulk they exhibit glass like dependence of conductivity with temperature as well as coupling of structural and transport properties. Interfaces of ionic liquids have been found to induce structural changes with evidence of long range structural ordering on solid-liquid interfaces spanning length scales of 10-100 nm. Our aim is to characterize the influence of confinement on the structural properties of ionic liquids. We present the first conductivity measurements on ionic liquids of the imidazolium type in single conical glass nanopores with confinements as low as tens of nanometers. We probe glassy dynamics of ionic liquids in a large range of temperatures (-20 to 70 °C) and nanopore opening sizes (20-600 nm) in silica glass nanocapillaries. Our results indicate no long range freezing effects due to confinement in nanopores with diameters as low as 20 nm. The studied ionic liquids are found to behave as glass like liquids across the whole accessible confinement size and temperature range.

9.
ACS Appl Nano Mater ; 3(8): 7829-7834, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-33458601

ABSTRACT

Solid-state nanopores provide a highly sensitive tool for single-molecule sensing and probing nanofluidic effects in solutions. Glass nanopipettes are a cheap and robust type of solid-state nanopore produced from pulling glass capillaries with opening orifice diameters down to below tens of nanometers. Sub-50 nm nanocapillaries allow an unprecedented resolution for translocating single molecules or for scanning ion conductance microscopy imaging. Due to the small opening orifice diameters, such nanocapillaries are difficult to fill with solutions, compromising their advantages of low cost, availability, and experimental simplicity. We present a simple and cheap method to reliably fill nanocapillaries down to sub-10 nm diameters by microwave radiation heating. Using a large statistic of filled nanocapillaries, we determine the filling efficiency and physical principle of the filling process using sub-50 nm quartz nanocapillaries. Finally, we have used multiple nanocapillaries filled by our method for high-resolution scanning ion conductance microscopy imaging.

10.
Nano Lett ; 19(12): 9075-9083, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31710497

ABSTRACT

Classical nanopore sensing relies on the measurement of the ion current passing through a nanopore. Whenever a molecule electrophoretically translocates through the narrow constriction, it modulates the ion current. Although this approach allows one to measure single molecules, the access resistance limits the spatial resolution. This physical limitation could potentially be overcome by an alternative sensing scheme taking advantage of the current across the membrane material itself. Such an electronic readout would also allow better temporal resolution than the ionic current. In this work, we present the fabrication of an electrically contacted molybdenum disulfide (MoS2) nanoribbon integrated with a nanopore. DNA molecules are sensed by correlated signals from the ionic current through the nanopore and the transverse current through the nanoribbon. The resulting signal suggests a field-effect sensing scheme where the charge of the molecule is directly sensed by the nanoribbon. We discuss different sensing schemes such as local potential sensing and direct charge sensing. Furthermore, we show that the fabrication of freestanding MoS2 ribbons with metal contacts is reliable and discuss the challenges that arise in the fabrication and usage of these devices.


Subject(s)
DNA/analysis , Disulfides/chemistry , Molybdenum/chemistry , Nanopores
11.
Biophys J ; 113(8): 1643-1653, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29045859

ABSTRACT

Confined mixtures of a polymer and nonspecifically binding particles (condensers) are studied as models for viruses containing double-stranded DNA (polymer) and condensing proteins (particles). We explore a model in which all interactions between the packed content (polymer and particles) and its confinement are purely repulsive, with only a short-range attraction between the condensers and polymer to simulate binding. In the range of physical parameters applicable to viruses, the model predicts reduction of pressure in the system effected by the condensers, despite the reduction in free volume. Condensers are found to be interspersed throughout the spherical confinement and only partially wrapped in the polymer, which acts as an effective medium for the condenser interactions. Crowding of the viral interior influences the DNA and protein organization, producing a picture inconsistent with a chromatin-like, beads-on-a-string structure. The model predicts an organization of the confined interior compatible with experimental data on unperturbed adenoviruses and polyomaviruses, at the same time providing insight into the role of condensing proteins in the viral infectious cycles of related viral families.


Subject(s)
DNA, Viral/chemistry , DNA/chemistry , Molecular Dynamics Simulation , Polymers/chemistry , Proteins/chemistry , Models, Genetic , Nucleic Acid Conformation , Virion/chemistry
12.
Nano Lett ; 16(12): 7882-7890, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960483

ABSTRACT

Through the use of optical tweezers we performed controlled translocations of DNA-protein complexes through nanocapillaries. We used RNA polymerase (RNAP) with two binding sites on a 7.2 kbp DNA fragment and a dCas9 protein tailored to have five binding sites on λ-DNA (48.5 kbp). Measured localization of binding sites showed a shift from the expected positions on the DNA that we explained using both analytical fitting and a stochastic model. From the measured force versus stage curves we extracted the nonequilibrium work done during the translocation of a DNA-protein complex and used it to obtain an estimate of the effective charge of the complex. In combination with conductivity measurements, we provided a proof of concept for discrimination between different DNA-protein complexes simultaneous to the localization of their binding sites.


Subject(s)
Bacterial Proteins/analysis , DNA-Directed RNA Polymerases/analysis , DNA/analysis , Endonucleases/analysis , Nanotubes , Optical Tweezers , Binding Sites , CRISPR-Associated Protein 9
13.
Nano Lett ; 15(10): 7118-25, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26393370

ABSTRACT

Combination of glass nanocapillaries with optical tweezers allowed us to detect DNA-protein complexes in physiological conditions. In this system, a protein bound to DNA is characterized by a simultaneous change of the force and ionic current signals from the level observed for the bare DNA. Controlled displacement of the protein away from the nanocapillary opening revealed decay in the values of the force and ionic current. Negatively charged proteins EcoRI, RecA, and RNA polymerase formed complexes with DNA that experienced electrophoretic force lower than the bare DNA inside nanocapillaries. Force profiles obtained for DNA-RecA in our system were different than those in the system with nanopores in membranes and optical tweezers. We suggest that such behavior is due to the dominant impact of the drag force comparing to the electrostatic force acting on a DNA-protein complex inside nanocapillaries. We explained our results using a stochastic model taking into account the conical shape of glass nanocapillaries.


Subject(s)
DNA-Binding Proteins/metabolism , Glass , Nanostructures , Protein Transport
14.
Nucleic Acids Res ; 43(8): 4274-83, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25820430

ABSTRACT

Genome packing in adenovirus has long evaded precise description, since the viral dsDNA molecule condensed by proteins (core) lacks icosahedral order characteristic of the virus protein coating (capsid). We show that useful insights regarding the organization of the core can be inferred from the analysis of spatial distributions of the DNA and condensing protein units (adenosomes). These were obtained from the inspection of cryo-electron tomography reconstructions of individual human adenovirus particles. Our analysis shows that the core lacks symmetry and strict order, yet the adenosome distribution is not entirely random. The features of the distribution can be explained by modeling the condensing proteins and the part of the genome in each adenosome as very soft spheres, interacting repulsively with each other and with the capsid, producing a minimum outward pressure of ∼0.06 atm. Although the condensing proteins are connected by DNA in disrupted virion cores, in our models a backbone of DNA linking the adenosomes is not required to explain the experimental results in the confined state. In conclusion, the interior of an adenovirus infectious particle is a strongly confined and dense phase of soft particles (adenosomes) without a strictly defined DNA backbone.


Subject(s)
Adenoviridae/ultrastructure , DNA, Viral/ultrastructure , Viral Core Proteins/ultrastructure , Virion/ultrastructure , Electron Microscope Tomography , Molecular Dynamics Simulation
15.
Biophys J ; 107(8): 1924-1929, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25418173

ABSTRACT

We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (~5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms.


Subject(s)
DNA, Viral/chemistry , Models, Biological , Osmotic Pressure , Virus Internalization , Bacteriophages/pathogenicity , Bacteriophages/physiology , Capsid/metabolism , DNA, Viral/metabolism , Gram-Negative Bacteria/virology , Thermodynamics
16.
Soft Matter ; 10(2): 348-56, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24651841

ABSTRACT

Using a unique home-made cell for four-contact impedance spectroscopy of conductive liquid samples, we establish the existence of two low frequency conductivity relaxations in aqueous solutions of gelatin, in both liquid and gel states. A comparison with diffusion measurements using pulsed field gradient NMR, and circular dichroism spectroscopy, shows that the faster relaxation process is due to gelatin macromolecule self-diffusion. This single molecule diffusion is mostly insensitive to the macroscopic state of the sample, implying that we have a clear separation of gelatin molecules into a free and network-bound phase. Scaling relationships for the self-diffusion indicate that the gelation process is not a percolative phenomenon, but is caused by aggregation of triple helices into a system-spanning fibre network.


Subject(s)
Gelatin/chemistry , Dielectric Spectroscopy , Diffusion , Gels/chemistry , Solutions , Water/chemistry
17.
Rev Sci Instrum ; 82(7): 073907, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806199

ABSTRACT

We present an improved approach to the impedance spectroscopy of conductive liquid samples using four-electrode measurements. Our method enables impedance measurements of conductive liquids down to the sub-Hertz frequencies, avoiding the electrode polarization effects that usually cripple standard impedance analysers. We have successfully tested our apparatus with aqueous solutions of potassium chloride and gelatin. The first substance has shown flat spectra from ~100 kHz down to sub-Hz range, while the results on gelatin clearly show the existence of two distinct low frequency conductive relaxations.

SELECTION OF CITATIONS
SEARCH DETAIL
...