Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6411, 2024 03 17.
Article in English | MEDLINE | ID: mdl-38494531

ABSTRACT

Physiological status can influence social behavior, which in turn can affect physiology and health. Previously, we reported that tumor growth in Drosophila virgin females depends on the social context, but did not investigate the underlying physiological mechanisms. Here, we sought to characterize the signal perceived between tumorous flies, ultimately discovering that the tumor suppressive effect varies depending on reproductive status. Firstly, we show that the tumor suppressive effect is neither dependent on remnant pheromone-like products nor on the microbiota. Transcriptome analysis of the heads of these tumorous flies reveals social-dependent gene-expression changes related to nervous-system activity, suggesting that a cognitive-like relay might mediate the tumor suppressive effect. The transcriptome also reveals changes in the expression of genes related to mating behavior. Surprisingly, we observed that this social-dependent tumor-suppressive effect is lost in fertilized females. After mating, Drosophila females change their behavior-favoring offspring survival-in response to peptides transferred via the male ejaculate, a phenomenon called "male manipulation". Remarkably, the social-dependent tumor suppressive effect is restored in females mated by sex-peptide deficient males. Since male manipulation has likely been selected to favor male gene transmission, our findings indicate that this evolutionary trait impedes social-dependent tumor growth slowdown.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Female , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Sexual Behavior, Animal/physiology , Peptides/metabolism , Reproduction
2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464294

ABSTRACT

Plant secondary metabolites pose a challenge for generalist herbivorous insects because they are not only potentially toxic, they also may trigger aversion. On the contrary, some highly specialized herbivorous insects evolved to use these same compounds as 'token stimuli' for unambiguous determination of their host plants. Two questions that emerge from these observations are how recently derived herbivores evolve to overcome this aversion to plant secondary metabolites and the extent to which they evolve increased attraction to these same compounds. In this study, we addressed these questions by focusing on the evolution of bitter taste preferences in the herbivorous drosophilid Scaptomyza flava, which is phylogenetically nested deep in the paraphyletic Drosophila. We measured behavioral and neural responses of S. flava and a set of non-herbivorous species representing a phylogenetic gradient (S. pallida, S. hsui, and D. melanogaster) towards host- and non-host derived bitter plant compounds. We observed that S. flava evolved a shift in bitter detection, rather than a narrow shift towards glucosinolates, the precursors of mustard-specific defense compounds. In a dye-based consumption assay, S. flava exhibited shifts in aversion toward the non-mustard bitter, plant-produced alkaloids caffeine and lobeline, and reduced aversion towards glucosinolates, whereas the non-herbivorous species each showed strong aversion to all bitter compounds tested. We then examined whether these changes in bitter preferences of S. flava could be explained by changes in sensitivity in the peripheral nervous system and compared electrophysiological responses from the labellar sensilla of S. flava, S. pallida, and D. melanogaster. Using scanning electron microscopy, we also created a map of labellar sensilla in S. flava and S. pallida. We assigned each sensillum to a functional sensilla class based on their morphology and initial response profiles to bitter and sweet compounds. Despite a high degree of conservation in the morphology and spatial placement of sensilla between S. flava and S. pallida, electrophysiological studies revealed that S. flava had reduced sensitivity to glucosinolates to varying degrees. We found this reduction only in I type sensilla. Finally, we speculate on the potential role that evolutionary genetic changes in gustatory receptors between S. pallida and S. flava may play in driving these patterns. Specifically, we hypothesize that the evolution of bitter receptors expressed in I type sensilla may have driven the reduced sensitivity observed in S. flava, and ultimately, its reduced bitter aversion. The S. flava system showcases the importance of reduced aversion to bitter defense compounds in relatively young herbivorous lineages, and how this may be achieved at the molecular and physiological level.

3.
Curr Biol ; 34(5): 1122-1132.e5, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38309271

ABSTRACT

Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.


Subject(s)
Drosophila , Phthiraptera , Bees/genetics , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Phthiraptera/genetics , Receptors, Cell Surface/genetics , Genes, Insect , Pheromones
4.
Front Mol Neurosci ; 16: 1182361, 2023.
Article in English | MEDLINE | ID: mdl-37645702

ABSTRACT

The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.

5.
Sci Rep ; 12(1): 18882, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344566

ABSTRACT

In adult Lepidoptera the labial palps are best known for their role in CO2 detection, but they can also bear sensilla chaetica which function is unknown. The number and distribution of sensilla chaetica in labial palps was studied using a bright field microscope. To determine if these sensilla have a gustatory function, we performed single sensillum electrophysiology recordings from palp and antennal sensilla of adult moths of Cydia pomonella (L.), Grapholita molesta (Busck) and Lobesia botrana (Denis and Shieffermüller). Each sensillum was stimulated with 3 doses of one of four test stimulus (sucrose, fructose, KCl and NaCl). Overall, responses (spikes/s-1) increased with dose, and were higher in the palps than in the antennae, and higher to sugars than to salts. With sugars the response increased with concentration in the palp but not in the antenna. With salts there was a drop in response at the intermediate concentration. The number and position of sensilla chaetica on labial palps was variable among individuals. Sensilla were located in the most exposed areas of the palp. Differences in sensilla distribution were detected between species. Such differences among species and between palps and antenna suggest that taste sensilla on the palps have an unforeseen role in adaptation.


Subject(s)
Moths , Sensilla , Animals , Sensilla/physiology , Taste , Salts , Sugars , Microscopy, Electron, Scanning , Arthropod Antennae
6.
J Chem Ecol ; 47(7): 642-652, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34331170

ABSTRACT

Finding plant cultivars that are resistant or tolerant against lepidopteran pests, takes time, effort and is costly. We present here a high throughput leaf-disk consumption assay system, to screen plants for resistance or chemicals for their deterrence. A webcam capturing images at regular intervals can follow the feeding activities of 150 larvae placed into individual cages. We developed a computer program running under an open source image analysis program to analyze and measure the surface of each leaf disk over time. We further developed new statistical procedures to analyze the time course of the feeding activities of the larvae and to compare them between treatments. As a test case, we compared how European corn borer larvae respond to a commercial antifeedant containing azadirachtin, and to quinine, which is a bitter alkaloid for many organisms. As expected, increasing doses of azadirachtin reduced and delayed feeding. However, quinine was poorly effective at the range of concentrations tested (10-5 M to 10-2 M). The model cage, the camera holder, the plugins, and the R scripts are freely available, and can be modified according to the users' needs.


Subject(s)
Biological Assay/methods , Feeding Behavior , Lepidoptera/physiology , Animals , Cluster Analysis , Feeding Behavior/drug effects , Image Processing, Computer-Assisted , Larva/growth & development , Larva/physiology , Lepidoptera/growth & development , Limonins/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism , Quinine/pharmacology , Zea mays/chemistry , Zea mays/metabolism
8.
Genes (Basel) ; 12(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33383708

ABSTRACT

Understanding how organisms adapt to environmental changes is a major question in evolution and ecology. In particular, the role of ancestral variation in rapid adaptation remains unclear because its trace on genetic variation, known as soft selective sweep, is often hardly recognizable from genome-wide selection scans. Here, we investigate the evolution of chemosensory genes in Drosophila yakuba mayottensis, a specialist subspecies on toxic noni (Morinda citrifolia) fruits on the island of Mayotte. We combine population genomics analyses and behavioral assays to evaluate the level of divergence in chemosensory genes and perception of noni chemicals between specialist and generalist subspecies of D. yakuba. We identify a signal of soft selective sweep on a handful of genes, with the most diverging ones involving a cluster of gustatory receptors expressed in bitter-sensing neurons. Our results highlight the potential role of ancestral genetic variation in promoting host plant specialization in herbivorous insects and identify a number of candidate genes underlying behavioral adaptation.


Subject(s)
Drosophila/physiology , Food Preferences , Herbivory/genetics , Morinda/parasitology , Adaptation, Biological/genetics , Animals , Chemoreceptor Cells/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fruit , Genes, Insect/genetics , Morinda/chemistry , Selection, Genetic , Taste/genetics
9.
Front Physiol ; 10: 343, 2019.
Article in English | MEDLINE | ID: mdl-31001138

ABSTRACT

Herbivorous insects mainly rely on their sense of taste to decode the chemical composition of potential hosts in close range. Beetles for example contact and scan leaves with their tarsi, mouthparts and antennal tips, i.e., appendages equipped with gustatory sensilla, among other sensillum types. Gustatory neurons residing in such uniporous sensilla detect mainly non-volatile compounds that contribute to the behavioral distinction between edible and toxic plants. However, the identification of gustatory sensilla is challenging, because an appendage often possesses many sensilla of distinct morphological and physiological types. Using the specialized poplar leaf beetle (Chrysomela populi, Chrysomelidae), here we show that cuticular autofluorescence scanning combined with electron microscopy facilitates the identification of antennal gustatory sensilla and their differentiation into two subtypes. The gustatory function of sensilla chaetica was confirmed by single sensillum tip-recordings using sucrose, salicin and salt. Sucrose and salicin were found at higher concentrations in methanolic leaf extracts of poplar (Populus nigra) as host plant compared to willow (Salix viminalis) as control, and were found to stimulate feeding in feeding choice assays. These compounds may thus contribute to the observed preference for poplar over willow leaves. Moreover, these gustatory cues benefited the beetle's performance since weight gain was significantly higher when C. populi were reared on leaves of poplar compared to willow. Overall, our approach facilitates the identification of insect gustatory sensilla by taking advantage of their distinct fluorescent properties. This study also shows that a specialist beetle selects the plant species that provides optimal development, which is partly by sensing some of its characteristic non-volatile metabolites via antennal gustatory sensilla.

10.
J Insect Physiol ; 112: 39-47, 2019 01.
Article in English | MEDLINE | ID: mdl-30528842

ABSTRACT

In flies, grooming serves several purposes, including protection against pathogens and parasites. Previously, we found Escherichia coli or lipopolysaccharides (LPS) can induce grooming behavior via activation of contact chemoreceptors on Drosophila wing. This suggested that specific taste receptors may contribute to this detection. In this study, we examined the perception of commercially available LPS on Drosophila wing chemoreceptors in grooming reflex. Behavioral tests conducted with bitter, sweet and salty gustation such as caffeine, sucrose and salt, using flies carrying a defect in one of their taste receptors related to the detection of bitter molecules (Gr66a, Gr33a), sugars (Gr5a, Gr64f), or salt (IR76b). LPS and tastants of each category were applied to wing sensilla of these taste defectflies and to wild-type Canton Special (CS) flies. Our results indicate that the grooming reflex induced by LPS requires a wide range of gustatory genes, and the inactivation of any of tested genes expressing cells causes a significant reduction of the behavior. This suggests that, while the grooming reflex is strongly regulated by cues perceived as aversive, other sapid cues traditionally related to sweet and salty tastes are also contributing to this behavior.


Subject(s)
Chemoreceptor Cells/metabolism , Drosophila melanogaster/physiology , Grooming , Sensilla/metabolism , Animals , Female , Lipopolysaccharides , Male , Optogenetics , Wings, Animal/metabolism
12.
J Invertebr Pathol ; 151: 144-150, 2018 01.
Article in English | MEDLINE | ID: mdl-29175531

ABSTRACT

Many insects and Dipterans in particular are known to spend considerable time grooming, but whether these behaviors actually are able to remove pathogenic fungal conidia is less clear. In this study, we examined whether grooming serves to protect flies by reducing the risk of fungal infection in Drosophila melanogaster. First, we confirmed that fungi were removed by grooming. Entomopathogenic, opportunistic, and plant pathogenic fungi were applied on the body surface of the flies. To estimate grooming efficiency, the number of removal conidia through grooming was quantified and we successfully demonstrated that flies remove fungal conidia from their body surfaces via grooming behavior. Second, the roles of gustatory and olfactory signals in fungus removal were examined. The wildtype fly Canton-S, the taste deficiency mutant poxn 70, and the olfactory deficiency mutant orco1 were used in the tests. Comparisons between Canton-S and poxn 70 flies indicated that gustatory signals do not have a significant role in fungal removal via grooming behavior in D. melanogaster. In contrast, the efficiency of conidia removal in orco1 flies was drastically decreased. Consequently, this study indicated that flies rely on mechanical stimulus for the induction of grooming and olfaction for more detailed removal.


Subject(s)
Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Grooming/physiology , Mitosporic Fungi , Smell/physiology , Animals , Cues , Host-Parasite Interactions/physiology
13.
PLoS One ; 12(11): e0185370, 2017.
Article in English | MEDLINE | ID: mdl-29121087

ABSTRACT

Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC.


Subject(s)
Carrier Proteins/metabolism , Drosophila melanogaster/physiology , Gram-Negative Bacteria/metabolism , Grooming/physiology , Animals , Drosophila melanogaster/microbiology , Mutation/genetics , Receptors, Pattern Recognition/metabolism , Signal Transduction
14.
Front Neuroanat ; 11: 48, 2017.
Article in English | MEDLINE | ID: mdl-28659767

ABSTRACT

Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals, which rear their siblings instead of their own offspring. In the course of evolution, such sterile castes are thought to have emerged through the process of kin selection, altruistic traits being transmitted to following generation if they benefit relatives. By allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs) might be instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem processes CHC information through antennal detection by basiconic sensilla. It is still unclear if other families of eusocial Hymenoptera use the same subsystem for sensing CHCs. Here, we examined the existence of such a subsystem in Vespidae (using the hornet Vespa velutina), a family in which eusociality emerged independently of ants. The antennae of both males and female hornets contain large basiconic sensilla. Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive features that are strikingly similar to those of the ant CHC-sensitive subsystem. Extracellular electrophysiological recordings further show that sensory neurons within hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not female-specific in hornets, the observed similarities with the olfactory system of ants are striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait, which may have played a key role in the advent of eusociality in these hymenopteran families by allowing kin recognition and the production of altruistic behaviors toward relatives.

15.
Nat Commun ; 8: 14192, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128210

ABSTRACT

Textural properties provide information on the ingestibility, digestibility and state of ripeness or decay of sources of nutrition. Compared with our understanding of the chemosensory assessment of food, little is known about the mechanisms of texture detection. Here we show that Drosophila melanogaster can discriminate food texture, avoiding substrates that are either too hard or too soft. Manipulations of food substrate properties and flies' chemosensory inputs indicate that texture preferences are revealed only in the presence of an appetitive stimulus, but are not because of changes in nutrient accessibility, suggesting that animals discriminate the substrates' mechanical characteristics. We show that texture preference requires NOMPC, a TRP-family mechanosensory channel. NOMPC localizes to the sensory dendrites of neurons housed within gustatory sensilla, and is essential for their mechanosensory-evoked responses. Our results identify a sensory pathway for texture detection and reveal the behavioural integration of chemical and physical qualities of food.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Mechanoreceptors/physiology , Mechanotransduction, Cellular/physiology , Sensilla/physiology , Transient Receptor Potential Channels/physiology , Animals , Animals, Genetically Modified , Dendrites/physiology , Eating/physiology , Feeding Behavior/physiology , Male , Sensilla/cytology
16.
Elife ; 52016 12 22.
Article in English | MEDLINE | ID: mdl-28005005

ABSTRACT

Reward perception guides all aspects of animal behavior. However, the relationship between the perceived value of a reward, the latent value of a reward, and the behavioral response remains unclear. Here we report that, given a choice between two sweet and chemically similar sugars-L- and D-arabinose-Drosophila melanogaster prefers D- over L- arabinose, but forms long-term memories of L-arabinose more reliably. Behavioral assays indicate that L-arabinose-generated memories require sugar receptor Gr43a, and calcium imaging and electrophysiological recordings indicate that L- and D-arabinose differentially activate Gr43a-expressing neurons. We posit that the immediate valence of a reward is not always predictive of the long-term reinforcement value of that reward, and that a subset of sugar-sensing neurons may generate distinct representations of similar sugars, allowing for rapid assessment of the salient features of various sugar rewards and generation of reward-specific behaviors. However, how sensory neurons communicate information about L-arabinose quality and concentration-features relevant for long-term memory-remains unknown.


Subject(s)
Arabinose/metabolism , Drosophila Proteins/agonists , Drosophila melanogaster/physiology , Receptors, Cell Surface/agonists , Animals , Feeding Behavior , Perception , Reward , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology
17.
J Insect Physiol ; 91-92: 63-75, 2016.
Article in English | MEDLINE | ID: mdl-27392781

ABSTRACT

Taste allows insects to detect palatable or toxic foods, identify a mate, and select appropriate oviposition sites. The gustatory system strongly contributes to the survival and reproductive success of many species, yet it is rarely studied in insect parasitoids. In order to locate and assess a host in which they will lay their eggs, female wasps actively search for chemical cues using their sensory organs present mainly on the antennae. In this paper, we studied the role of antennal taste sensilla chaetica in the perception of contact semiochemicals in Trissolcus brochymenae (Hymenoptera: Platygastridae), an egg parasitoid of the brassicaceae pest Murgantia histrionica (Heteroptera: Pentatomidae). Methanolic extracts obtained from male and female hosts elicited action potentials in taste neurons housed in antennal sensilla chaetica, indicating that these sensilla are involved in the perception of non volatile host kairomones. In behavioural assays, wasp females displayed an intense searching behaviour in open arenas treated with host extracts, thus confirming that these kairomones are soluble in polar solvents. We further investigated the extracts by Gas Chromatography-Mass Spectrometry (GC-MS) and found that they contain several compounds which are good candidates for these contact kairomones. This study contributes to better understanding contact chemoreception in egg parasitoids and identifying gustatory receptor neurons involved in the host location process.


Subject(s)
Arthropod Antennae/physiology , Heteroptera/parasitology , Host-Parasite Interactions , Oviposition , Taste Perception , Wasps/physiology , Animals , Appetitive Behavior , Electrophysiological Phenomena , Female , Gas Chromatography-Mass Spectrometry , Male
18.
Proc Natl Acad Sci U S A ; 113(25): 6880-5, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274056

ABSTRACT

Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G protein-coupled kinin receptor designated "Aedae-KR." We used protease-resistant kinin analogs 1728, 1729, and 1460 to evaluate their effects on sucrose perception and feeding behavior. In no-choice feeding bioassays (capillary feeder and plate assays), the analog 1728, which contains α-amino isobutyric acid, inhibited females from feeding on sucrose. It further induced quick fly-away or walk-away behavior following contact with the tarsi and the mouthparts. Electrophysiological recordings from single long labellar sensilla of the proboscis demonstrated that mixing the analog 1728 at 1 mM with sucrose almost completely inhibited the detection of sucrose. Aedae-KR was immunolocalized in contact chemosensory neurons in prothoracic tarsi and in sensory neurons and accessory cells of long labellar sensilla in the distal labellum. Silencing Aedae-KR by RNAi significantly reduced gene expression and eliminated the feeding-aversion behavior resulting from contact with the analog 1728, thus directly implicating the Aedae-KR in the aversion response. To our knowledge, this is the first report that kinin analogs modulate sucrose perception in any insect. The aversion to feeding elicited by analog 1728 suggests that synthetic molecules targeting the mosquito Aedae-KR in the labellum and tarsi should be investigated for the potential to discover novel feeding deterrents of mosquito vectors.


Subject(s)
Aedes/physiology , Kinins/pharmacology , Molecular Mimicry , Neurons/physiology , Sucrose , Taste , Animals , Cloning, Molecular , DNA, Complementary , Female , Humans , Kinins/chemistry , Male , Microscopy, Confocal
19.
Article in English | MEDLINE | ID: mdl-26635553

ABSTRACT

Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called "bitter". By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different "categories" of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of "bitter" tasting.

20.
J Insect Physiol ; 78: 15-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25937056

ABSTRACT

Trissolcus brochymenae (Hymenoptera: Platygastridae) is an egg parasitoid that could be used to control stink bugs like Murgantia histrionica (Heteroptera: Pentatomidae), a pest of brassicaceous crops. Before laying their eggs, parasitoid females spend considerable time examining the substrate with their antennae, which are also used during feeding and mating behaviours. This suggests that contact chemoreception plays a prominent role in many aspects of parasitoid ecology. Therefore, we examined the sensitivity of antennal taste sensilla chaetica to several classical tastants including those that are appetitive or aversive. In addition we studied the taste preferences of wasps when presented with these chemicals alone or mixed. The sensilla chaetica of T. brochymenae responded to serial concentrations of sucrose, salts, and quinine, but no concentration-dependent effect was observed when testing sinigrin, a secondary metabolite found in many brassicaceae. However, both sinigrin and quinine inhibited responses to 0.1 M sucrose when mixed with this sugar. Behavioural taste preference assays confirmed that wasps showed a dose dependent preference for sucrose over agarose. In addition, a behavioural avoidance of sucrose solutions containing quinine was observed. This effect was not observed when sinigrin was used as a feeding deterrent. In the two-choice tests the wasp did not discriminate between sucrose solutions mixed with salts and sucrose alone. Further no preference for salts or sinigrin compared to agarose alone was observed. This work represents the first step towards the identification of gustatory receptor neurons implicated in the detection of different types of chemical cues in egg parasitoids.


Subject(s)
Arthropod Antennae/physiology , Wasps/physiology , Animals , Appetitive Behavior , Female , Glucosinolates/pharmacology , Neurons/physiology , Quinine/pharmacology , Sucrose/pharmacology , Taste , Taste Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...