Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000927

ABSTRACT

The phenomenon of high-frequency distortion (HFD) in the electric grids, at both low-voltage (LV) and medium-voltage (MV) levels, is gaining increasing interest within the scientific and technical community due to its growing occurrence and the associated impact. These disturbances are mainly injected into the grid by new installed devices, essential for achieving decentralized generation based on renewable sources. In fact, these generation systems are connected to the grid through power converters, whose switching frequencies are significantly increasing, leading to a corresponding rise in the frequency of the injected disturbances. HFD represents a quite recent issue, but numerous scientific papers have been published in recent years on this topic. Furthermore, various international standards have also covered it, to provide guidance on instrumentation and related algorithms and indices for the measurement of these phenomena. When measuring HFD in MV grids, it is necessary to use instrument transformers (ITs) to scale voltages and currents to levels fitting with the input stages of power quality (PQ) instruments. In this respect, the recently released Edition 2 of the IEC 61869-1 standard extends the concept of the IT accuracy class up to 500 kHz; however, the IEC 61869 standard family provides guidelines on how to test ITs only at power frequency. This paper provides an extensive review of literature, standards, and the main outputs of European research projects focusing on HFD and ITs. This preliminary study of the state-of-the-art represents an essential starting point for defining significant waveforms to test ITs and, more generally, to achieve a comprehensive understanding of HFD. In this framework, this paper provides a summary of the most common ranges of amplitude and frequency variations of actual HFD found in real grids, the currently adopted measurement methods, and the normative open challenges to be addressed.

2.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676082

ABSTRACT

Since the integration of electronic devices and intelligent electronic devices into the power grid, power quality (PQ) has consistently remained a significant concern for system operators and experts. Maintaining high standards of power quality is crucial to preventing malfunctions and faults in electric assets and connected loads. Recently, PQ studies have shifted their focus to a specific frequency range, previously not considered problematic-the supraharmonic 2 kHz to 150 kHz range. This range is not populated by easily recognizable harmonic components of the 50 Hz to 60 Hz mains fundamental, but by a combination of intentional emissions, switching non-linearities and byproducts, and various types of resonances. This paper aims to provide a detailed analysis of the impact of supraharmonics (SHs) on power network operation and assets, focusing on the most relevant documented negative effects, namely power loss and the heating of grid elements, aging of dielectric materials, failure of medium voltage (MV) cable terminations, and interference with equipment and power line communication (PLC) technology in particular. Under some shareable assumptions, limits are derived and compared to existing ones for harmonic phenomena, providing a clear identification of the primary issues associated with supraharmonics and suggestions for the standardization process. Strictly related is the problem of grid monitoring and assessment of SH distortion, discussing the suitability of normative requirements for instrument transformers (ITs) with a specific focus on their accuracy.

3.
Sensors (Basel) ; 23(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37447751

ABSTRACT

Stray current is a relevant phenomenon in particular for DC electrified transportation systems, affecting track and infrastructure within the right of way and other structures and installations nearby. It worsens with time and the level of protection depends on timely maintenance, as well as correct design choices. The assessment of track insulation is the starting point for both stray current monitoring systems and at commissioning or upon major changes. Standardized methods (ref. EN 50122-2 or IEC 62128-2) have been almost unchanged in the last 20 years but suffer from accuracy issues and variability due to parameters and conditions not under the operator's control. The uncertainty of test methods is increasingly important now that contractual specifications require a high level of insulation for new systems. A critical discussion and analysis of the sources of variability and practical constraints is proposed, followed by an evaluation of uncertainty, with the objective not only to assess the accuracy of the provided results, but also to foster research on innovative, more flexible and accurate methods.

4.
Sensors (Basel) ; 23(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904583

ABSTRACT

Electromagnetic emissions from earthquakes are known as precursors and are of considerable importance for the purpose of early alarms. The propagation of low-frequency waves is favored, and the range between tens of mHz to tens of Hz has been heavily investigated in the last thirty years. This work describes the self-financed Opera 2015 project that initially consisted of six monitoring stations over Italy, equipped with electric and magnetic field sensors, among others. Insight of the designed antennas and low-noise electronic amplifiers provides both characterization of performance (similar to the best commercial products) and the elements to replicate the design for our own independent studies. Measured signals through data acquisition systems were then processed for spectral analysis and are available on the Opera 2015 website. Data provided by other world-known research institutes have also been considered for comparison. The work provides examples of processing methods and results representation, identifying many exogenous noise contributions of natural or human-made origin. The study of the results occurred for some years and led us to think that reliable precursors are confined to a short area around the earthquake due to the significant attenuation and the effect of overlapping noise sources. To this aim, a magnitude-distance indicator was developed to classify the detectability of the EQ events observed during 2015 and compared this with some other known earthquake events documented in the scientific literature.

5.
Sensors (Basel) ; 22(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336487

ABSTRACT

Receiver position sensing is investigated in a dynamic wireless power transfer (DWPT) system for electric vehicle (EV) charging. Exploiting the peculiar behaviour of the resonator arrays input impedance, it is possible to identify the position of the receiver coil by exciting the first array resonator with a signal at a proper frequency and measuring the resulting current. An analytical expression of the input impedance of the resonator array coupled with the EV receiver coil placed in a generic position is provided; its sensitivity to different circuit parameters is also analysed. The outline of a simple and effective algorithm for the localization of the EV is proposed and applied to a test case.

6.
Sensors (Basel) ; 20(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218151

ABSTRACT

Electrified transportation systems (ETSs) are affected by stray current problems impacting within and outside the right of way on reinforcement, buried metal structures and foundations. Stray current protection systems have recently been integrated in the track structure. Track electrical quantities are, thus, usually measured to assess track insulation and protection efficiency but should be backed up by additional measurements at the affected structures and installations, in order to assess their exposure and risk of corrosion. Ideally, a stray current monitoring system proceeds from the measurement of these quantities, to data collection and archival, to data presentation, analysis and prediction. Feasible sensors and probes, the impact of environmental conditions and uncertainty are considered for the measurement at the physical level. Data analysis is critically reviewed considering the variability of operating conditions and the effectiveness of each quantity as indicator of track insulation and protection efficiency. Given the normal spread of values, for data presentation and interpretation, suitable techniques are considered based on averaging, curve similarity and feature extraction, and also for the task of assessing compliance to limits or reference values and establishing a trend that may drive informed maintenance decision.

7.
Data Brief ; 31: 105978, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32715035

ABSTRACT

DC railways are characterized by particularly intense arcing caused by pantograph detachment, due to the large current intensity and the general implementation of onboard resonant filters, whose transient response is triggered by electric transients including electric arcs. Electric arc depends on the train speed (the relative speed between the sliding contact over the pantograph and the hot spot on the catenary system), the intensity of the collected pantograph current and the line voltage level. Electric arcs are broadband in nature and can trigger the system transient response dominated by the resonant filter, besides interfering with the operation of onboard equipment (such as for energy conversion and metering).

8.
Data Brief ; 30: 105477, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32382592

ABSTRACT

AC railways are characterized by peculiar Power Quality phenomena, where moving loads (trains, locomotives, etc.) interact with the supply network that provides electrical energy through the overhead contact line. Distortion, resonances, transients overlap in a complex dynamic scenario, that sees several and various problems of Power Quality, network stability, power and energy metering and disturbance to systems and equipment. For all related studies and analysis raw experimental data are extremely important. The provided data consists of time-domain waveforms of sampled pantograph voltage and current: each recording is tagged with the specific train operating condition (traction, cruising/coasting, braking, standstill), the active power and the speed, to support correlation and clustering of data.

SELECTION OF CITATIONS
SEARCH DETAIL
...