Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 254(Pt 1): 127741, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287568

ABSTRACT

Mammaliicoccus sciuri, a commensal and pathogenic bacterium of significant clinical and veterinary relevance, expresses exfoliative toxin C (ExhC), a specific glutamyl endopeptidase belonging to the chymotrypsin family as the principal virulence factor. However, unlike most members of this family, ETs are inactive against a wide range of substrates and possess exquisite specificity for desmoglein-1 (Dsg1), a cadherin-like adhesion molecule that is crucial to maintain tissue integrity, thereby preventing the separation of skin cells and the entry of pathogens. ExhC is of clinical importance since in addition to causing exfoliation in pigs and mice, it induces necrosis in multiple mammalian cell lines, a property not observed for other ETs. Previous experiments have implicated the ExhC79-128 fragment in causing necrosis. Site-directed mutagenesis of specific residues within this fragment were studied and led to the design of an ExhC variant containing four-point mutations (ExhCmut4) lacking necrotic potential but retaining nearly wild-type (wt) levels of enzymatic activity. Moreover, the determination of the ExhCwt and ExhCmut4 crystal structures identified the conformation in the necrosis-linked region. These results constitute an important step toward the understanding of the mechanisms underlying the necrotic and epidermolytic activity of ExhC.


Subject(s)
Amino Acids , Exfoliatins , Animals , Swine , Mice , Amino Acids/metabolism , Exfoliatins/genetics , Exfoliatins/metabolism , Exfoliatins/pharmacology , Staphylococcus , Necrosis , Mammals/metabolism
2.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569382

ABSTRACT

Spiders of Loxosceles genus are widely distributed and their venoms contain phospholipases D (PLDs), which degrade phospholipids and trigger inflammatory responses, dermonecrosis, hematological changes, and renal injuries. Biochemical, functional, and structural properties of three recombinant PLDs from L. intermedia, L. laeta, and L. gaucho, the principal species clinically relevant in South America, were analyzed. Sera against L. gaucho and L. laeta PLDs strongly cross-reacted with other PLDs, but sera against L. intermedia PLD mostly reacted with homologous molecules, suggesting underlying structural and functional differences. PLDs presented a similar secondary structure profile but distinct melting temperatures. Different methods demonstrated that all PLDs cleave sphingomyelin and lysophosphatidylcholine, but L. gaucho and L. laeta PLDs excelled. L. gaucho PLD showed greater "in vitro" hemolytic activity. L. gaucho and L. laeta PLDs were more lethal in assays with mice and crickets. Molecular dynamics simulations correlated their biochemical activities with differences in sequences and conformations of specific surface loops, which play roles in protein stability and in modulating interactions with the membrane. Despite the high similarity, PLDs from L. gaucho and L. laeta venoms are more active than L. intermedia PLD, requiring special attention from physicians when these two species prevail in endemic regions.


Subject(s)
Phospholipase D , Spider Venoms , Spiders , Animals , Mice , Phosphoric Diester Hydrolases , Spider Venoms/chemistry , South America
3.
Appl Microbiol Biotechnol ; 106(24): 8035-8051, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36374330

ABSTRACT

Caseous lymphadenitis (CLA) is a disease that affects small ruminants, and the best way to prevent its spread on a herd is through immunoprophylaxis. Thus, we aimed to evaluate the MBP:PLD:CP40 fusion protein as a new CLA immunogen. The fusion protein was constructed by combining Corynebacterium pseudotuberculosis PLD and CP40 proteins with maltose-binding protein (MBP) as an intrinsic adjuvant. The antigenicity, allergenic potential, prediction of B epitopes, binding to MHC receptors, and docking on the Toll-Like 2 receptor were evaluated in silico. MBP:PLD:CP40 was expressed and purified. 40 BALB/c were divided into four groups (G1 - control, G2 - Saponin, G3 - MBP:PLD:CP40, and G4 - rPLD + rCP40). Total IgG, IgG1, and IgG2a were quantified, and the expressions of cytokines after splenocyte in vitro stimulation were assessed. Mice were challenged 42 days after the first immunization. The in silico analysis showed that MBP:PLD:CP40 has immunogenic potential, does not have allergic properties, and can dock on the TRL2 receptor. MBP:PLD:CP40 stimulated the production of IgG1 antibodies in a fivefold proportion to IgG2a, and TNF and IL-17 were significantly expressed in response to the antigenic stimuli. When rPLD and rCP40 were used together for immunization, they could induce IFN-γ and IL-12, but with no detectable antibody production. The G3 and G4 groups presented a survival of 57.14% and 42.86%, respectively, while the G1 and G2 mice were all dead 15 days after the challenge. MBP:PLD:CP40 partially protected the mice against C. pseudotuberculosis infection and can be considered a potential new CLA immunogen. KEY POINTS: • The fusion protein induced more IgG1 than IgG2a antibodies; • The fusion protein also induced the expression of the TNF and IL-17 cytokines; • Mice inoculated with MBP:PLD:CP40 presented a 57.14% survival.


Subject(s)
Corynebacterium pseudotuberculosis , Animals , Mice , Corynebacterium pseudotuberculosis/genetics , Maltose-Binding Proteins , Interleukin-17
4.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077258

ABSTRACT

Staphylococcal exfoliative toxins (ETs) are glutamyl endopeptidases that specifically cleave the Glu381-Gly382 bond in the ectodomains of desmoglein 1 (Dsg1) via complex action mechanisms. To date, four ETs have been identified in different Staphylococcus aureus strains and ETE is the most recently characterized. The unusual properties of ETs have been attributed to a unique structural feature, i.e., the 180° flip of the carbonyl oxygen (O) of the nonconserved residue 192/186 (ETA/ETE numbering), not conducive to the oxyanion hole formation. We report the crystal structure of ETE determined at 1.61 Å resolution, in which P186(O) adopts two conformations displaying a 180° rotation. This finding, together with free energy calculations, supports the existence of a dynamic transition between the conformations under the tested conditions. Moreover, enzymatic assays showed no significant differences in the esterolytic efficiency of ETE and ETE/P186G, a mutant predicted to possess a functional oxyanion hole, thus downplaying the influence of the flip on the activity. Finally, we observed the formation of ETE homodimers in solution and the predicted homodimeric structure revealed the participation of a characteristic nonconserved loop in the interface and the partial occlusion of the protein active site, suggesting that monomerization is required for enzymatic activity.


Subject(s)
Exfoliatins , Staphylococcal Infections , Catalytic Domain , Exfoliatins/chemistry , Exfoliatins/metabolism , Humans , Staphylococcus aureus/metabolism
5.
Int J Biol Macromol ; 192: 757-770, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34634338

ABSTRACT

Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.


Subject(s)
Brown Recluse Spider , Mutant Proteins/immunology , Phospholipase D/immunology , Spider Bites/immunology , Spider Bites/therapy , Vaccines/immunology , Accidents , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antivenins/blood , Antivenins/immunology , Biomarkers , Disease Models, Animal , Immunogenicity, Vaccine , Leukocyte Count , Mice , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Neutralization Tests , Phospholipase D/chemistry , Phospholipase D/genetics , Rabbits , Spider Bites/diagnosis , Spider Bites/prevention & control , Spider Venoms/immunology , Structure-Activity Relationship , Treatment Outcome , Vaccination , Vaccines/administration & dosage
6.
Biomedicines ; 9(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801128

ABSTRACT

Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.

7.
AMB Express ; 10(1): 186, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33074348

ABSTRACT

Caseous lymphadenitis (CL) is a chronic infectious disease that affects sheep and goats. Many serological tests have been developed to detect the disease; one of the most widely used is the enzyme-linked immunosorbent assay (ELISA), due to its advantages, which include acceptable cost-effectiveness, applicability, sensitivity and specificity. ELISA formulations using recombinant proteins can exhibit significant sensitivity and specificity when using a single purified antigen. DTxR, Trx, TrxR, LexA, SodC, SpaC, NanH, and PknG recombinant proteins can be considered target proteins for ELISA development due to its extracellular or on the cell surface location, which allows a better recognition by the immune system. Therefore, the objectives of this study were to evaluate the antigenic reactivity of Corynebacterium pseudotuberculosis recombinant proteins in goat and sheep serum. Of eight proteins evaluated, rSodC was selected for validation assays with small ruminant serum samples from the semiarid region of the state of Bahia, Brazil. Validation assays with goat serum samples showed that ELISA-rSodC presented sensitivity and specificity of 96% and 94%, respectively. Validation assays with sheep serum showed that ELISA-rSodC exhibited sensitivity and specificity of 95% and 98%, respectively. Analysis of 756 field serum samples showed that rSodC identified 95 positive samples (23%) in goats and 75 positive samples (21%) in sheep. The ELISA with recombinant SodC protein developed in this study discriminated positive and negative serum samples with high levels of sensitivity and specificity. This formulation is promising for epidemiological surveys and CL control programs.Trial registration AEC No 4958051018. 12/18/2018, retrospectively registered.

8.
Biochim Biophys Acta Gen Subj ; 1864(7): 129597, 2020 07.
Article in English | MEDLINE | ID: mdl-32156582

ABSTRACT

The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis. The crystal structures of the wild type and mutant Pro115Gln ArgR from Corynebacterium pseudotuberculosis determined at 1.7 Å demonstrate that a single amino acid substitution switches co-repressor specificity from Tyr to Arg. Molecular dynamics simulations indicate that the first step, i.e., the binding of the co-repressor, occurs in the trimeric state and that Pro115Gln ArgR preferentially binds Arg. It was also shown that, in Pro115 ArgR hexamers, the concomitant binding of sodium ions shifts selectivity to Tyr. Structural data combined with phylogenetic analyses of ArgR from C. pseudotuberculosis suggest that substitutions in the binding pocket at position 115 may alter its specificity for amino acids and that the length of the protein interdomain linker can provide further functional flexibility. These results support the existence of alternative ArgR regulatory mechanisms in this pathogenic bacterium.


Subject(s)
Bacterial Proteins/genetics , Corynebacterium pseudotuberculosis/genetics , Phylogeny , Repressor Proteins/genetics , Transcription, Genetic , Amino Acid Sequence/genetics , Arginine/biosynthesis , Arginine/genetics , Binding Sites , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Mutation/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics
10.
Sci Rep ; 9(1): 16336, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31704997

ABSTRACT

Exfoliative toxins (ETs) are secreted virulence factors produced by staphylococci. These serine proteases specifically cleave desmoglein 1 (Dsg1) in mammals and are key elements in staphylococcal skin infections. We recently identified a new et gene in S. aureus O46, a strain isolated from ovine mastitis. In the present study, we characterized the new et gene at a genetic level and the enzymatic activity of the deduced protein. The S. aureus O46 genome was re-assembled, annotated and compared with other publicly available S. aureus genomes. The deduced amino acid sequence of the new et gene shared 40%, 53% and 59% sequence identity to those of ETA, ETB and ETD, respectively. The new et gene shared the same genetic vicinity and was similar in other S. aureus strains bearing this gene. The recombinant enzyme of the new et gene caused skin exfoliation in vivo in neonatal mice. The new et-gene was thus named ete, encoding a new type (type E) of exfoliative toxin. We showed that ETE degraded the extracellular segments of Dsg1 in murine, ovine and caprine epidermis, as well as in ovine teat canal epithelia, but not that in bovine epidermis. We further showed that it directly hydrolyzed human and swine Dsg1 as well as murine Dsg1α and Dsg1ß, but not canine Dsg1 or murine Dsg1γ. Molecular modeling revealed a correlation between the preferred orientation of ETE docking on its Dsg1 cleavage site and species-specific cleavage activity, suggesting that the docking step preceding cleavage accounts for the ETE species-specificity. This new virulence factor may contribute to the bacterial colonization on the stratified epithelia in certain ruminants with mastitis.


Subject(s)
Host Specificity , Staphylococcus aureus/metabolism , Toxins, Biological/metabolism , Amino Acid Sequence , Animals , Extracellular Space/metabolism , Genome, Bacterial/genetics , Hydrolysis , Mice , Molecular Docking Simulation , Protein Conformation , Ruminants/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Toxins, Biological/chemistry
11.
Microb Biotechnol ; 12(6): 1313-1323, 2019 11.
Article in English | MEDLINE | ID: mdl-31287241

ABSTRACT

Caseous lymphadenitis (CLA) is a small ruminant disease characterized by the development of granulomatous lesions in superficial and internal lymph nodes, as well as in some organs, and causes significant economic losses worldwide. The aetiological agent of CLA is the bacterium Corynebacterium pseudotuberculosis; however, the commercially available diagnostic tools present problems with regard to specificity, which can lead to false-negative results. This study aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA) for the detection of specific immunoglobulins in goats and sheep using recombinant C. pseudotuberculosis PLD, CP40, PknG, DtxR and Grx proteins. For validation of the ELISAs, 130 goat serum samples and 160 sheep serum samples were used. The best ELISA for goats was developed using a combination of PLD and CP40 as antigens at a 1:1 ratio, which presented 96.9% sensitivity and 98.4% specificity. The most effective ELISA for sheep presented 91% sensitivity and 98.7% specificity when recombinant PLD alone was used as the antigen. These ELISAs can be used as highly accurate tools in epidemiological surveys and for the serodiagnosis of C. pseudotuberculosis infection in goats and sheep.


Subject(s)
Antibodies, Bacterial/blood , Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/immunology , Goat Diseases/diagnosis , Lymphadenitis/veterinary , Serologic Tests/methods , Sheep Diseases/diagnosis , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Corynebacterium Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Goats , Lymphadenitis/diagnosis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Sheep , Veterinary Medicine/methods
12.
Int J Biol Macromol ; 131: 798-805, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30905755

ABSTRACT

Myceliophthora heterothallica is a thermophilic fungus potentially relevant for the production of enzymes involved in the degradation of plant biomass. A xylanase encoding gene of this species was identified by means of RT-PCR using primers designed based on a xylanase coding sequence (GH11) of the fungus M. thermophila. The obtained gene was ligated to the vector pET28a(+) and the construct was transformed into Escherichia coli cells. The recombinant xylanase (r-ec-XylMh) was heterologously expressed, and the highest activity was observed at 55 °C and pH 6. The enzyme stability was greater than 70% between pH 4.5 and 9.5 and the inclusion of glycerol (50%) resulted in a significant increase in thermostability. Under these conditions, the enzyme retained more than 50% residual activity when incubated at 65 °C for 1 h, and approximately 30% activity when incubated at 70 °C for the same period. The tested cations did not increase xylanolytic activity, and the enzyme indicated significant tolerance to several phenolic compounds after 24 h, as well as high specificity for xylan, with no activity for other substrates such as CMC (carboxymethylcellulose), Avicel, pNPX (p-nitrophenyl-ß-D-xylopyranoside) and pNPA (p-nitrophenyl-α-L-arabinofuranoside), and is thus, of potential relevance in pulp bleaching.


Subject(s)
Ascomycota/genetics , Gene Expression , Recombinant Proteins , Xylosidases/genetics , Xylosidases/isolation & purification , Amino Acid Sequence , Ascomycota/enzymology , Chemical Phenomena , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Hydrogen-Ion Concentration , Kinetics , Sequence Analysis, DNA , Substrate Specificity , Temperature , Xylosidases/chemistry , Xylosidases/metabolism
13.
Viruses ; 11(1)2019 01 11.
Article in English | MEDLINE | ID: mdl-30641880

ABSTRACT

Zika virus (ZIKV) has been associated with serious health conditions, and an intense search to discover different ways to prevent and treat ZIKV infection is underway. Berberine and emodin possess several pharmacological properties and have been shown to be particularly effective against the entry and replication of several viruses. We show that emodin and berberine trigger a virucidal effect on ZIKV. When the virus was exposed to 160 µM of berberine, a reduction of 77.6% in the infectivity was observed; when emodin was used (40 µM), this reduction was approximately 83.3%. Dynamic light scattering data showed that both compounds significantly reduce the hydrodynamic radius of virus particle in solution. We report here that berberine and emodin, two natural compounds, have strong virucidal effect in Zika virus.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Plants, Medicinal/chemistry , Zika Virus/drug effects , Animals , Antiviral Agents/isolation & purification , Berberine/pharmacology , Biological Products/isolation & purification , Chlorocebus aethiops , Emodin/pharmacology , Medicine, East Asian Traditional , Vero Cells , Virion/drug effects , Virus Replication/drug effects
14.
J Cell Biochem ; 118(8): 2053-2063, 2017 08.
Article in English | MEDLINE | ID: mdl-27808444

ABSTRACT

Sphingomyelinases D have only been identified in arachnid venoms, Corynebacteria, Arcanobacterium, Photobacterium and in the fungi Aspergillus and Coccidioides. The arachnid and bacterial enzymes share very low sequence identity and do not contain the HKD sequence motif characteristic of the phospholipase D superfamily, however, molecular modeling and circular dichroism of SMases D from Loxosceles intermedia and Corynebacterium pseudotuberculosis indicate similar folds. The phospholipase, hemolytic and necrotic activities and mice vessel permeabilities were compared and both enzymes possess the ability to hydrolyze phospholipids and also promote similar pathological reactions in the host suggesting the existence of a common underlying mechanism in tissue disruption. J. Cell. Biochem. 118:2053-2063, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Arthropod Proteins/toxicity , Bacterial Proteins/toxicity , Capillary Permeability/drug effects , Corynebacterium pseudotuberculosis/chemistry , Phosphoric Diester Hydrolases/toxicity , Spiders/chemistry , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Corynebacterium pseudotuberculosis/enzymology , Corynebacterium pseudotuberculosis/pathogenicity , Erythrocytes/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hemolysis/drug effects , Horses , Humans , Mice , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Sequence Alignment , Sequence Homology, Amino Acid , Sheep, Domestic , Skin/drug effects , Skin/pathology , Spiders/enzymology , Spiders/pathogenicity
15.
Microb Cell Fact ; 15: 83, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27184574

ABSTRACT

BACKGROUND: Corynebacterium pseudotuberculosis, a facultative intracellular bacterial pathogen, is the etiological agent of caseous lymphadenitis (CLA), an infectious disease that affects sheep and goats and it is responsible for significant economic losses. The disease is characterized mainly by bacteria-induced caseous necrosis in lymphatic glands. New vaccines are needed for reliable control and management of CLA. Thus, the putative virulence factors SpaC, SodC, NanH, and PknG from C. pseudotuberculosis FRC41 may represent new target proteins for vaccine development and pathogenicity studies. RESULTS: SpaC, PknG and NanH presented better vaccine potential than SodC after in silico analyses. A total of 136 B and T cell epitopes were predicted from the four putative virulence factors. A cluster analysis was performed to evaluate the redundancy degree among the sequences of the predicted epitopes; 57 clusters were formed, most of them (34) were single clusters. Two clusters from PknG and one from SpaC grouped epitopes for B and T-cell (MHC I and II). These epitopes can thus potentially stimulate a complete immune response (humoral and cellular) against C. pseudotuberculosis. Several other clusters, including two from NanH, grouped B-cell epitopes with either MHC I or II epitopes. The four target proteins were expressed in Escherichia coli. A purification protocol was developed for PknG expression. CONCLUSIONS: In silico analyses show that the putative virulence factors SpaC, PknG and NanH present good potential for CLA vaccine development. Target proteins were successfully expressed in E. coli. A protocol for PknG purification is described.


Subject(s)
Bacterial Vaccines/genetics , Corynebacterium pseudotuberculosis/genetics , Corynebacterium pseudotuberculosis/pathogenicity , Gene Expression , Virulence Factors/genetics , Virulence Factors/immunology , Amino Acid Sequence , Bacterial Vaccines/immunology , Bacterial Vaccines/metabolism , Cluster Analysis , Corynebacterium pseudotuberculosis/immunology , Corynebacterium pseudotuberculosis/metabolism , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Escherichia coli/metabolism , Molecular Sequence Data , Plasmids/genetics , Plasmids/metabolism , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Virulence Factors/metabolism
16.
Biochem Biophys Res Commun ; 475(4): 350-5, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27233609

ABSTRACT

The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium.


Subject(s)
Bacterial Proteins/chemistry , Corynebacterium pseudotuberculosis/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Arginine/metabolism , Bacterial Proteins/metabolism , Binding Sites , Corynebacterium Infections/microbiology , Corynebacterium pseudotuberculosis/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Domains , Repressor Proteins/metabolism , Substrate Specificity , Tyrosine/metabolism
17.
Biochem Biophys Res Commun ; 468(1-2): 365-71, 2015.
Article in English | MEDLINE | ID: mdl-26505799

ABSTRACT

2S albumins, the seed storage proteins, are the primary sources of carbon and nitrogen and are involved in plant defense. The mature form of Moringa oleifera (M. oleifera), a chitin binding protein isoform 3-1 (mMo-CBP3-1) a thermostable antifungal, antibacterial, flocculating 2S albumin is widely used for the treatment of water and is potentially interesting for the development of both antifungal drugs and transgenic crops. The crystal structure of mMo-CBP3-1 determined at 1.7 Å resolution demonstrated that it is comprised of two proteolytically processed α-helical chains, stabilized by four disulfide bridges that is stable, resistant to pH changes and has a melting temperature (TM) of approximately 98 °C. The surface arginines and the polyglutamine motif are the key structural factors for the observed flocculating, antibacterial and antifungal activities. This represents the first crystal structure of a 2S albumin and the model of the pro-protein indicates the structural changes that occur upon formation of mMo-CBP3-1 and determines the structural motif and charge distribution patterns for the diverse observed activities.


Subject(s)
2S Albumins, Plant/chemistry , Moringa oleifera/chemistry , Seeds/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation
18.
Biochem Biophys Res Commun ; 467(1): 171-7, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26299923

ABSTRACT

Exfoliative toxins are serine proteases secreted by Staphylococcus aureus that are associated with toxin-mediated staphylococcal syndromes. To date, four different serotypes of exfoliative toxins have been identified and 3 of them (ETA, ETB, and ETD) are linked to human infection. Among these toxins, only the ETD structure remained unknown, limiting our understanding of the structural determinants for the functional differentiation between these toxins. We recently identified an ETD-like protein associated to S. aureus strains involved in mild mastitis in sheep. The crystal structure of this ETD-like protein was determined at 1.95 Å resolution and the structural analysis provide insights into the oligomerization, stability and specificity and enabled a comprehensive structural comparison with ETA and ETB. Despite the highly conserved molecular architecture, significant differences in the composition of the loops and in both the N- and C-terminal α-helices seem to define ETD-like specificity. Molecular dynamics simulations indicate that these regions defining ET specificity present different degrees of flexibility and may undergo conformational changes upon substrate recognition and binding. DLS and AUC experiments indicated that the ETD-like is monomeric in solution whereas it is present as a dimer in the asymmetric unit indicating that oligomerization is not related to functional differentiation among these toxins. Differential scanning calorimetry and circular dichroism assays demonstrated an endothermic transition centered at 52 °C, and an exothermic aggregation in temperatures up to 64 °C. All these together provide insights about the mode of action of a toxin often secreted in syndromes that are not associated with either ETA or ETB.


Subject(s)
Exfoliatins/chemistry , Exfoliatins/toxicity , Staphylococcus aureus/chemistry , Staphylococcus aureus/pathogenicity , Animals , Crystallography, X-Ray , Exfoliatins/classification , Female , Humans , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Sheep , Staphylococcal Infections/etiology , Staphylococcal Infections/microbiology , Static Electricity , Structural Homology, Protein , Syndrome
19.
Protein Pept Lett ; 22(8): 712-8, 2015.
Article in English | MEDLINE | ID: mdl-26112976

ABSTRACT

Grapevine virus A (GVA), a flexible filament of approximately 800 nm in length is composed of capsid subunits that spontaneously assembles around a positive sense genomic RNA. In addition to encapsidation, plant viruses capsid proteins (CPs) participate in other processes throughout infection and GVA CP is involved in cell-to-cell translocation of the virus. A protocol was developed to obtain low-molecular weight GVA-CP that is not prone to aggregation and spontaneous assembly and this was characterized by circular dichroism and dynamic light scattering. These results indicate the suitably of GVA-CP for X-ray crystallographic and NMR studies that should lead to the elucidation of the first three-dimensional structure of a flexible filamentous virus from the Betaflexiviridae family.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , Flexiviridae/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Amino Acid Sequence , Capsid Proteins/genetics , Dynamic Light Scattering , Flexiviridae/chemistry , Molecular Sequence Data , Protein Structure, Secondary , Recombinant Proteins/genetics , Sequence Alignment
20.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1418-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286953

ABSTRACT

Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Šand diffracted to a maximum resolution of 2.6 Å.


Subject(s)
Arthropod Proteins/chemistry , Phosphoric Diester Hydrolases/chemistry , Spider Venoms/enzymology , Amino Acid Sequence , Crystallization , Crystallography, X-Ray , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...