Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 38(2): 229-246.e13, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32707077

ABSTRACT

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.


Subject(s)
Cell Plasticity/genetics , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Epithelial Cells/cytology , Genetic Heterogeneity , Humans , Lung Neoplasms/pathology , Mice , Single-Cell Analysis/methods , Transcriptome/genetics
2.
Cell ; 170(6): 1149-1163.e12, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886383

ABSTRACT

The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.


Subject(s)
Lung/cytology , Mesoderm/cytology , Animals , Homeostasis , Lung/physiology , Mice , Organoids/cytology , Pulmonary Alveoli/cytology , Receptors, G-Protein-Coupled/analysis , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...