Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Hyg Environ Health ; 260: 114391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781750

ABSTRACT

The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.


Subject(s)
Bacteria , Cities , Environmental Monitoring , Microbiota , Rain , Water Microbiology , Humans , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Environmental Monitoring/methods , RNA, Ribosomal, 16S/genetics , Feces/microbiology
2.
Microorganisms ; 11(4)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37110345

ABSTRACT

The ability of WWTP outflow bacteria at colonizing rock surfaces and contributing to the formation of river epilithic biofilms was investigated. Bacterial community structures of biofilms (b-) developing on rocks exposed to treated wastewaters (TWW) of a hospital (HTWW) and a domestic (DTWW) clarifier, and to surface waters of the stream located at 10 m, 500 m, and 8 km from the WWTP outlet, were compared. Biofilm bacterial contents were analyzed by cultural approaches and a tpm-based DNA metabarcoding analytical scheme. Co-occurrence distribution pattern analyses between bacterial datasets and eighteen monitored pharmaceuticals were performed. Higher concentrations of iohexol, ranitidine, levofloxacin, and roxithromycin were observed in the b-HTWW while atenolol, diclofenac, propranolol, and trimethoprim were higher in the b-DTWW. MPN growth assays showed recurrent occurrences of Pseudomonas aeruginosa and Aeromonas caviae among these biofilms. An enrichment of multi-resistant P. aeruginosa cells was observed in the hospital sewer line. P. aeruginosa MPN values were negatively correlated to roxithromycin concentrations. The tpm DNA metabarcoding analyses confirmed these trends and allowed an additional tracking of more than 90 species from 24 genera. Among the recorded 3082 tpm ASV (amplicon sequence variants), 41% were allocated to the Pseudomonas. Significant differences through ANOSIM and DESeq2 statistical tests were observed between ASV recovered from b-HTWW, b-DTWW, and epilithic river biofilms. More than 500 ASV were found restricted to a single sewer line such as those allocated to Aeromonas popoffii and Stenotrophomonas humi being strictly found in the b-HTWW file. Several significant correlations between tpm ASV counts per species and pharmaceutical concentrations in biofilms were recorded such as those of Lamprocystis purpurea being positively correlated with trimethoprim concentrations. A tpm source tracking analysis showed the b-DTWW and b-HTWW tpm ASV to have contributed, respectively, at up to 35% and 2.5% of the epilithic river biofilm tpm-taxa recovered downstream from the WWTP outlet. Higher contributions of TWW taxa among epilithic biofilms were recorded closer to the WWTP outlet. These analyses demonstrated a coalescence of WWTP sewer communities with river freshwater taxa among epilithic biofilms developing downstream of a WWTP outlet.

3.
Sci Total Environ ; 815: 152662, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34963611

ABSTRACT

Cities are patchworks of urban catchments divided into functional units according to their commercial, residential and industrial activities, and socio-urbanistic patterns. The hypothesis of city surface microbiomes being structured by socio-urbanistic variables leading to an emergence of synurbic taxa was tested. According to the r/K microbial ecology theory, a gradient of well-adapted synurbic K-strategists and of opportunistic -r-strategists should occur over city surfaces. K-strategists would be core components while r-ones would be transiently detected. To resolve these patterns, sub-catchments (n = 21) of an area of high commercial and industrial activities were investigated over three time periods covering one year. The sub-catchments' land use patterns and associated human behaviors were converted into socio-urbanistic variables and groupings. Bacterial cells mobilized by runoffs per sub-catchment were recovered, and analyzed by classical approaches, microbial source tracking DNA assays and DNA meta-barcoding approaches. Relationships between these datasets, the runoff physico-chemical properties, and descriptors of the socio-urbanistic groupings were investigated. 16S rRNA meta-barcoding analyses showed evidence of the occurrence of K- and r-like strategists. Twenty-eight core genera were identified, and correlation networks revealed large bacterial modules organized around actinobacterial taxa involved in hydrocarbon degradation processes. Other bacterial networks were related to the occurrences of hygienic wastes, and involved bacteria originating from fecal contaminations. Several r-strategists like Sulfurospirillum were recorded and found associated to point source pollutions. The tpm-metabarcoding approach deciphered these r / K strategists at the species level among more than ten genera. Nine core K-like Pseudomomas species were identified. The P. aeruginosa human opportunistic pathogen and P. syringae phytopathogens were part of these K-strategists. Other tpm-harboring bacterial pathogens showed r-like opportunistic distribution patterns. Correlation network analyses indicated a strong incidence of hygienic wastes and hydrocarbon-pollutions on tpm-harboring bacteria. These analyses demonstrated the occurrence of core synurbic bacterial K-strategists over city surfaces.


Subject(s)
Environmental Pollutants , Microbiota , Water Pollutants, Chemical , Bacteria/genetics , Humans , RNA, Ribosomal, 16S , Water Pollutants, Chemical/analysis
4.
Front Microbiol ; 12: 667043, 2021.
Article in English | MEDLINE | ID: mdl-34054773

ABSTRACT

Even though organic waste (OW) recycling via anaerobic digestion (AD) and composting are increasingly used, little is known about the impact of OW origin (fecal matters and food and vegetable wastes) on the end products' bacterial contents. The hypothesis of a predictable bacterial community structure in the end products according to the OW origin was tested. Nine OW treatment plants were selected to assess the genetic structure of bacterial communities found in raw OW according to their content in agricultural and urban wastes and to estimate their modifications through AD and composting. Two main bacterial community structures among raw OWs were observed and matched a differentiation according to the occurrences of urban chemical pollutants. Composting led to similar 16S rRNA gene OTU profiles whatever the OW origin. With a significant shift of about 140 genera (representing 50% of the bacteria), composting was confirmed to largely shape bacterial communities toward similar structures. The enriched taxa were found to be involved in detoxification and bioremediation activities. This process was found to be highly selective and favorable for bacterial specialists. Digestates showed that OTU profiles differentiated into two groups according to their relative content in agricultural (manure) and urban wastes (mainly activated sludge). About one third of the bacterial taxa was significantly affected by AD. In digestates of urban OW, this sorting led to an enrichment of 32 out of the 50 impacted genera, while for those produced from agricultural or mixed urban/agricultural OW (called central OW), a decay of 54 genera over 60 was observed. Bacteria from activated sludge appeared more fit for AD than those of other origins. Functional inferences showed AD enriched genera from all origins to share similar functional traits, e.g., chemoheterotrophy and fermentation, while being often taxonomically distinct. The main functional traits among the dominant genera in activated sludge supported a role in AD. Raw OW content in activated sludge was found to be a critical factor for predicting digestate bacterial contents. Composting generated highly predictable and specialized community patterns whatever the OW origin. AD and composting bacterial changes were driven by functional traits selected by physicochemical factors such as temperature and chemical pollutants.

5.
Sci Total Environ ; 767: 145425, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33636795

ABSTRACT

The bTPMT (bacterial thiopurine S-methyltransferase), encoded by the tpm gene, can detoxify metalloid-containing oxyanions and xenobiotics. The hypothesis of significant relationships between tpm distribution patterns and chemical pollutants found in urban deposits was investigated. The tpm gene was found conserved among eight bacterial phyla with no sign of horizontal gene transfers but a predominance among gammaproteobacteria. A DNA metabarcoding approach was designed for tracking tpm-harboring bacteria among polluted urban deposits and sediments recovered for more than six years in a detention basin (DB). This DB recovers runoff waters and sediments from a zone of high commercial activities. The PCR products from DB samples led to more than 540,000 tpm reads after DADA2 or MOTHUR bio-informatic manipulations that were allocated to more than 88 and less than 634 sequence variants per sample. The tpm community patterns were significantly different between the recent urban deposits and those that had accumulated for more than 2 years in the DB, and between those of the DB surface and the DB settling pit. These groups of samples had distinct mixture of priority pollutants. Significant relationships between tpm ordination patterns, sediment accumulation time periods and location, and concentrations in PAH, chlorpyrifos, and 4-nonylphenols (NP) were observed. These correlations matched the higher occurrences of, among others, Aeromonas, Pseudomonas, and Xanthomonas tpm-harboring bacteria in recent urban DB deposits more contaminated with chrysene and alkylphenol ethoxylates. Highly significant drops in tpm reads allocated to Aeromonas species were recorded in the oldest DB sediments accumulating naphthalene and metallic pollutants. Degraders of urban pollutants such as P. aeruginosa and P. putida showed conserved distribution patterns over time but P. syringae phytopathogens were more abundant in the oldest sediments. TPMT-harboring bacteria can be used to assess the incidence of high risk priority pollutants on environmental systems.


Subject(s)
Bacteria , Water Pollutants, Chemical , Bacteria/enzymology , Bacteria/genetics , DNA Barcoding, Taxonomic , Environmental Monitoring , Geologic Sediments , Methyltransferases , Spatio-Temporal Analysis , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 27(3): 3295-3308, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31838704

ABSTRACT

Recharge of aquifers by urban stormwater may trigger significant ecological changes that can be detrimental to the biodiversity and functioning of groundwater ecosystems. Here, the effects of aquifer recharge (AR) on three levels of parameters were investigated: dissolved organic carbon (DOC) quantity and quality, global biofilm characteristics, and diversity changes of bacterial communities. As DOC enrichment by AR can be mitigated by vadose zone (VZ) thickness, three AR sites with thin VZ (< 3 m) and three sites with thick VZ (> 10 m) were selected. For each AR site, clay beads were incubated over a 10-day-long rainy period through wells in recharged and non-recharged groundwaters. Total proteins, dehydrogenase, and hydrolytic activities were monitored from clay beads to assess biofilm development. Bacterial richness on beads was estimated by 16S rRNA-based metabarcoding. AR was found to significantly increase DOC and biodegradable DOC (BDOC) concentrations, biofilm development, and bacterial richness especially in sites with thin VZ. VZ thickness was inversely related to microbial growth indicators and bacterial richness in groundwater, through a control of DOC availability. The proportion of Bacteroidetes 16S rRNA gene reads was higher in recharged groundwater than in non-recharged groundwater, suggesting that this phylum could be used as an indicator of DOC enrichment associated with AR. Quantitative PCR assays for Bacteroides DNA confirmed these trends and showed an enrichment of this bacterial group in DOC-rich aquifer waters. The positive linear relationships between BDOC concentrations and biofilm variables highlighted a strong C-limitation of groundwater impacting bacterial species sorting and activity.


Subject(s)
Bacteria/chemistry , Ecosystem , Groundwater , RNA, Ribosomal, 16S/chemistry , Biofilms
7.
Environ Sci Pollut Res Int ; 25(25): 24860-24881, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29931635

ABSTRACT

The nature and fate of urban contaminants washed by stormwater events and accumulating in a detention basin (DB) were investigated. Relations between bacterial and chemical contaminants of trapped urban sediments, and field parameters were analyzed. Fecal indicators and some pathogens known to be environmentally transmitted (Nocardia, Pseudomonas aeruginosa, and Aeromonas caviae) were tracked, and their persistence investigated. Six sampling campaigns were carried out over 3 years, using five sites including a settling chamber (SC). Aerosolized bacteria at these sites were also monitored. Deposits in the basin were made of fine particles and their content in chemical pollutants was found highly variable. High polycyclic aromatic hydrocarbon (PAH) contents were measured but only three pesticides, over 22, were detected. Deposits were significantly contaminated by fecal indicator bacteria (FIB), P. aeruginosa, A. caviae, and by Nocardia. Only A. caviae showed significant numbers in aerosolized particles recovered over the detention basin. Nocardia spp. cells heavily contaminated the SC. The efficacy of the detention basin at reducing bacterial counts per rain event and over time were estimated. A slight drop in the counts was monitored for fecal indicators but not for the other bacterial groups. Hydrodynamic parameters had a strong impact on the distribution and features of the deposits. Multiple factors impacted the fate of FIB, P. aeruginosa, A. caviae, and Nocardia cells, but in a group dependent manner. Nocardia counts were found positively correlated with volatile organic matter. FIB appeared highly efficient colonizers of the DB.


Subject(s)
Environmental Monitoring , Nocardia/growth & development , Wastewater/microbiology , Bacteria , Feces/microbiology , France , Hydrology , Incidence , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rain , Wastewater/chemistry , Water Pollutants/analysis
8.
Sci Rep ; 7(1): 13219, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038457

ABSTRACT

Urban activities generate surface deposits over impervious surfaces that can represent ecological and health hazards. Bacteriome genetic structures of deposits washed off during rainfall events, over an urban industrial watershed, were inferred from 16 S rRNA gene (rrs) sequences generated by high throughput sequencing. Deposits were sampled over a 4 year-period from a detention basin (DB). Major shifts, matching key management practices, in the structure of these urban bacteriomes, were recorded. Correlation analyses of rrs similarities between samples and their respective concentrations in chemical pollutants, markers of human fecal contaminations (HF183) and antimicrobial resistances (integrons), were performed. Harsher environmental constraints building up in the older deposits led to an increase number of rrs reads from extremophiles such as Acidibacter and Haliangium. Deposits accumulating in the decantation pit of the DB showed an increase in rrs reads from warm blooded intestinal tract bacteria such as Bacteroides and Prevotella. This enrichment matched higher concentrations of Bacteroides HF183 genotypes normally restricted to humans. Bacteriomes of urban deposits appeared good indicators of human-driven environmental changes. Their composition was found representative of their origin. Soil particles and rain appeared to be major contributors of the inferred bacterial taxa recovered from recent deposits.


Subject(s)
Bacteria/genetics , Water Microbiology , Water Pollutants, Chemical/toxicity , Water Pollution , Bacteria/classification , Bacteria/isolation & purification , Bacteroides/genetics , Cities , Environmental Monitoring , Prevotella/genetics , RNA, Bacterial , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Soil Microbiology , Surface Properties , Water Movements
9.
Front Microbiol ; 8: 19, 2017.
Article in English | MEDLINE | ID: mdl-28174557

ABSTRACT

Rivers are often challenged by fecal contaminations. The barrier effect of sediments against fecal bacteria was investigated through the use of a microbial source tracking (MST) toolbox, and by Next Generation Sequencing (NGS) of V5-V6 16S rRNA gene (rrs) sequences. Non-metric multi-dimensional scaling analysis of V5-V6 16S rRNA gene sequences differentiated bacteriomes according to their compartment of origin i.e., surface water against benthic and hyporheic sediments. Classification of these reads showed the most prevalent operating taxonomic units (OTU) to be allocated to Flavobacterium and Aquabacterium. Relative numbers of Gaiella, Haliangium, and Thermoleophilum OTU matched the observed differentiation of bacteriomes according to river compartments. OTU patterns were found impacted by combined sewer overflows (CSO) through an observed increase in diversity from the sewer to the hyporheic sediments. These changes appeared driven by direct transfers of bacterial contaminants from wastewaters but also by organic inputs favoring previously undetectable bacterial groups among sediments. These NGS datasets appeared more sensitive at tracking community changes than MST markers. The human-specific MST marker HF183 was strictly detected among CSO-impacted surface waters and not river bed sediments. The ruminant-specific DNA marker was more broadly distributed but intense bovine pollution was required to detect transfers from surface water to benthic and hyporheic sediments. Some OTU showed distribution patterns in line with these MST datasets such as those allocated to the Aeromonas, Acinetobacter, and Pseudomonas. Fecal indicators (Escherichia coli and total thermotolerant coliforms) were detected all over the river course but their concentrations were not correlated with MST ones. Overall, MST and NGS datasets suggested a poor colonization of river sediments by bovine and sewer bacterial contaminants. No environmental outbreak of these bacterial contaminants was detected.

10.
Environ Sci Pollut Res Int ; 21(8): 5402-18, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24407782

ABSTRACT

The efficacy of a wastewater treatment lagoon (WWTL) at preventing the spread of Pseudomonas aeruginosa into natural aquatic habitats was investigated. A WWTL and its connected combined sewer and brook were exhaustively sampled. Physico-chemical analyses showed a stratification of the first pond according to pH, temperature and oxygen content. The P. aeruginosa counts partially matched this stratification with higher values among the bottom anaerobic waters of the first half of this pond. Genotyping of 494 WWTL P. aeruginosa strains was performed and led to the definition of 85 lineages. Dominant lineages were observed, with some being found all over the WWTL including the connected brook. IS5 was used as an indicator of genomic changes, and 1 to 12 elements were detected among 16 % of the strains. IS-driven lasR (genetic regulator) disruptions were detected among nine strains that were not part of the dominant lineages. These insertional mutants did not show significant elastase activities but showed better growth than the PAO1 reference strain in WWTL waters. Differences in growth patterns were related to a better survival of these mutants at an alkaline pH and a better ability at using some C-sources such as alanine. The opportunistic colonization of a WWTL by P. aeruginosa can involve several metabolic strategies which appeared lineage specific. Some clones appeared more successful than others at disseminating from a combined sewer toward the overflow of a WWTL.


Subject(s)
Pseudomonas aeruginosa/growth & development , Waste Disposal, Fluid , Wastewater/microbiology , Genotype , Pseudomonas aeruginosa/classification , Waste Disposal Facilities , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...