Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacology ; 64(1): 49-56, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11731722

ABSTRACT

We wanted to determine whether oxygen radicals open the mitochondrial ATP-dependent potassium channels (K(ATP)) during an ischemic period to reduce cell death and oxidant stress. Chick embryonic cardiomyocytes were used. Cell viability was quantified with propidium iodide (5 microM), and free radicals was measured using 2',7'-dichlorofluorescein diacetate. Preconditioning was produced by 10 min of simulated ischemia followed by 10 min of reoxygenation. Acetylcholine (1 mM), infused for 10 min instead of preconditioning, reduced cell death similarly (24 +/- 5%, n = 7 and 18 +/- 2%, n = 7, respectively, vs. controls, 49 +/- 6%, n = 8). In control series, 60 min of simulated ischemia and 3 h of reoxygenation generated free radicals more than 300% above the baseline (ischemia: 3.63 +/- 0.58, reoxygenation: 3.66 +/- 0.47, n = 8). Preconditioning and acetylcholine markedly attenuated the oxidant stress during simulated ischemia (1.18 +/- 0.41, n = 6 and 1.34 +/- 0.60, n = 7 vs. controls 3.63 +/- 0.58, n = 8) and re-oxygenation (1.23 +/- 0.36, n = 6 and 1.50 +/- 0.59, n = 7 vs. controls 3.66 +/- 0.47, n = 8). The protection of acetylcholine was abolished with pretreatment with the antioxidant thiol reductant 2-mercaptopropionyl glycine and posttreatment with 5-hydroxydecanoate, a selective mitochondrial K(ATP) channel antagonist (37 +/- 7%, n = 7). These results demonstrate that oxygen radicals open mitochondrial K(ATP) channels, which mediates the acetylcholine-induced preconditioning effect, and that stimulation of this signaling pathway attenuates oxidant stress.


Subject(s)
Acetylcholine/pharmacology , Free Radicals/metabolism , Myocardial Ischemia/drug therapy , Potassium Channels/drug effects , Tiopronin/pharmacology , Vasodilator Agents/pharmacology , Analysis of Variance , Animals , Cell Death , Chickens , Drug Interactions , Ischemic Preconditioning, Myocardial , Oxidative Stress/drug effects
2.
Biophys J ; 75(1): 493-502, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9649411

ABSTRACT

Partition of sized FITC-dextrans in polyacrylamide gel showed a relationship between Kav and solute radius as predicted by the theory of Ogston, which is based solely on geometry of the spaces. Permeability data for the same dextrans were fit to several theories, including those based on geometry and those based on hydrodynamic interactions, and the gel structure predicted by the partition and permeability data were compared. The Brinkman effective-medium model (based on hydrodynamic interactions and requiring a measure of the hydraulic conductivity of the matrix) gave the best fit of permeability data with the values for fiber radius (rf) and void volume of the gel (epsilon) that were obtained from the partition data. The models based on geometry and the hydrodynamic screening model of Cukier, using the rf and epsilon from partition data, all predicted higher rates of permeation than observed experimentally, while the effective-medium model with added term for steric interaction predicted lower permeation than that observed. The size of cylindrical pores appropriate for the partition data predicted higher rates of permeation than observed. These relative results were unaffected by the method of estimating void volume of the gel. In sum, it appears that one can use data on partition of solute, combined with measurement of hydraulic conductivity, to predict solute permeation in polyacrylamide gel.


Subject(s)
Acrylic Resins , Dextrans/isolation & purification , Biophysical Phenomena , Biophysics , Dextrans/chemistry , Electrophoresis, Polyacrylamide Gel , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/isolation & purification , Gels , Macromolecular Substances , Models, Chemical , Particle Size , Permeability , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...