Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
J Invertebr Pathol ; 202: 108027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042446

ABSTRACT

Social insects, such as ants, are preferred host organisms of pathogens and parasites because colonies are densely populated, and the number of potential hosts is high in the same place and time. Within a colony, individuals are exposed differentially to risks according to their function and age. Thus, older individuals forage and are therefore the most exposed to infection, predation, or physical stress, while young workers mostly stay inside the sheltered nest being less exposed. Immune investment is considered to be dependent on an individual's age and pathogen pressure. Long-term exposure to a parasite could affect the immune activity of individuals in an intriguing way that interferes with the age-dependent decline in immunocompetence. However, there are only few cases in which such interferences can be studied. The myrmecopathogenic fungus Rickia wasmannii, which infects entire colonies without killing the workers, is a suitable candidate for such studies. We investigated the general immunocompetence of Myrmica scabrinodis ant workers associated with non-lethal fungal infection by measuring the levels of active phenoloxidase (PO) and total PO (PPO) (reflecting the amount of both active and inactive forms of the enzyme) in two age classes. The level of PO proved to be higher in infected workers than in uninfected ones, while the level of PPO increased with age but was not affected by infection. Overall, these results indicate that a long-term infection could go hand in hand with increased immune activity of ant workers, conferring them higher level of protection.


Subject(s)
Ants , Mycoses , Parasites , Animals , Ants/microbiology , Predatory Behavior , Stress, Physiological
2.
Commun Biol ; 6(1): 183, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797462

ABSTRACT

Many parasites interfere with the behaviour of their hosts. In social animals, such as ants, parasitic interference can cause changes on the level of the individual and also on the level of the society. The ant-parasitic fungus Rickia wasmannii influences the behaviour of Myrmica ants by expanding the host's nestmate recognition template, thereby increasing the chance of the colony accepting infected non-nestmates. Infected ants consistently show an increase of the alkane tricosane (n-C23) in their cuticular hydrocarbon profiles. Although experimental application of single compounds often elicits aggression towards manipulated ants, we hypothesized that the increase of n-C23 might underlie the facilitated acceptance of infected non-nestmates. To test this, we mimicked fungal infection in M. scabrinodis by applying synthetic n-C23 to fresh ant corpses and observed the reaction of infected and uninfected workers to control and manipulated corpses. Infected ants appeared to be more peaceful towards infected but not uninfected non-nestmates. Adding n-C23 to uninfected corpses resulted in reduced aggression in uninfected ants. This supports the hypothesis that n-C23 acts as a 'pacifying' signal. Our study indicates that parasitic interference with the nestmate discrimination of host ants might eventually change colony structure by increasing genetic heterogeneity in infected colonies.


Subject(s)
Ants , Mycoses , Animals , Aggression , Hydrocarbons , Cadaver
3.
Insects ; 12(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467158

ABSTRACT

Ants (Hymenoptera: Forimicidae) are exceedingly common in nature. They constitute a conspicuous part of the terrestrial animal biomass and are also considered common ecosystem engineers. Due to their key role in natural habitats, they are at the basis of any nature conservation policy. Thus, the first step in developing adequate conservation and management policies is to build a precise faunistic inventory. More than 16,000 valid ant species are registered worldwide, of which 126 are known to occur in Hungary. Thanks to the last decade's efforts in the Hungarian myrmecological research, and because of the constantly changing taxonomy of several problematic ant genera, a new checklist of the Hungarian ants is presented here. The state of the Hungarian myrmecofauna is also discussed in the context of other European countries' ant fauna. Six species (Formica lemani, Lasius nitidigaster, Tetramorium immigrans, T. staerckei, T. indocile and Temnothorax turcicus) have been reported for the first time in the Hungarian literature, nine taxon names were changed after systematic replacements, nomenclatorial act, or as a result of splitting formerly considered continuous populations into more taxa. Two species formerly believed to occur in Hungary are now excluded from the updated list. All names are nomenclaturally assessed, and complete synonymies applied in the Hungarian literature for a certain taxon are provided. Wherever it is not self-evident, comments are added, especially to explain replacements of taxon names. Finally, we present a brief descriptive comparison of the Hungarian myrmecofauna with the ant fauna of the surrounding countries. The current dataset is a result of ongoing work on inventorying the Hungarian ant fauna, therefore it is expected to change over time and will be updated once the ongoing taxonomic projects are completed.

4.
J Insect Conserv ; 24(1): 175-185, 2020.
Article in English | MEDLINE | ID: mdl-32089639

ABSTRACT

Vineyard inter-rows are important biodiversity hotspots within agricultural landscapes, especially when they are covered with vegetation. However, little is known on the effects to management intensity on a broad range of surface-dwelling invertebrates and their interaction with vegetation. We assessed the diversity and activity density of ants, beetles, millipedes, mites, spiders, springtails and woodlice using pitfall traps in vineyards with either high management intensity (HI) consisting of frequently tilled inter-rows or low management intensity (LO) with alternating tillage in every second inter-row. The study was performed in the Târnave wine region in Central Romania. We wanted to know whether, (i) vineyard management intensity affects the diversity of plants and invertebrates, and (ii) local habitat characteristics affect species richness of different functional guilds and taxa. Species richness of some invertebrate taxa (Coleoptera, Araneae, Formicidae) did significantly differ between HI and LO vineyards. Only phytophages (some Coleoptera) increased in species richness and activity density with vegetation cover. Vineyard soil properties (organic matter content, pH, P, and K) did not significantly differ between HI and LO vineyards. We conclude that vineyard inter-row management can affect both the conservation of biodiversity and the provision of biodiversity-driven ecosystem services.

6.
Mol Phylogenet Evol ; 127: 387-404, 2018 10.
Article in English | MEDLINE | ID: mdl-29709692

ABSTRACT

Seed harvesting ants are ecosystem engineers that shape vegetation, nutrient cycles, and microclimate. Progress in ecological research is, however, slowed down by poor species delimitation. For example, it has not been resolved to date, how many species the European harvester ant Messor "structor" (Latreille, 1798) represents. Since its first description, splitting into additional taxa was often proposed but not accepted later on due to inconsistent support from morphology and ecology. Here, we took an iterative integrative-taxonomy approach - comparing multiple, independent data sets of the same sample - and used traditional morphometrics, Wolbachia symbionts, mitochondrial DNA, amplified fragment length polymorphism, and ecological niche modelling. Using the complementarity of the data sets applied, we resolved multiple, strong disagreements over the number of species, ranging from four to ten, and the allocation of individuals to species. We consider most plausible a five-species hypothesis and conclude the taxonomic odyssey by redescribing Messor structor, M. ibericus Santschi, 1925, and M. muticus (Nylander, 1849) stat.rev., and by describing two new species, M. ponticus sp.n. and M. mcarthuri sp.n. The evolutionary explanations invoked in resolving the various data conflicts include pronounced morphological crypsis, incomplete lineage-sorting or ongoing cospeciation of endosymbionts, and peripatric speciation - these ants' significance to evolutionary biology parallels that to ecology. The successful solution of this particular problem illustrates the usefulness of the integrative approach to other systematic problems of comparable complexity and the importance of understanding evolution to drawing correct conclusions on species' attributes, including their ecology and biogeography.


Subject(s)
Ants/classification , Biological Evolution , Amplified Fragment Length Polymorphism Analysis , Animals , Ants/anatomy & histology , Ants/genetics , Ants/microbiology , DNA, Mitochondrial/genetics , Discriminant Analysis , Ecosystem , Female , Male , Models, Theoretical , Phylogeny , Principal Component Analysis , Species Specificity , Terminology as Topic , Wolbachia/physiology
7.
Sci Rep ; 7: 46323, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28402336

ABSTRACT

Studies investigating host-parasite systems rarely deal with multispecies interactions, and mostly explore impacts on hosts as individuals. Much less is known about the effects at colony level, when parasitism involves host organisms that form societies. We surveyed the effect of an ectoparasitic fungus, Rickia wasmannii, on kin-discrimination abilities of its host ant, Myrmica scabrinodis, identifying potential consequences at social level and subsequent changes in colony infiltration success of other organisms. Analyses of cuticular hydrocarbons (CHCs), known to be involved in insects' discrimination processes, revealed variations in chemical profiles correlated with the infection status of the ants, that could not be explained by genetic variation tested by microsatellites. In behavioural assays, fungus-infected workers were less aggressive towards both non-nestmates and unrelated queens, enhancing the probability of polygyny. Likewise, parasitic larvae of Maculinea butterflies had a higher chance of adoption by infected colonies. Our study indicates that pathogens can modify host recognition abilities, making the society more prone to accept both conspecific and allospecific organisms.


Subject(s)
Ants/parasitology , Behavior, Animal , Fungi/physiology , Host-Parasite Interactions , Mycoses , Animals , Ants/chemistry , Hydrocarbons/analysis
8.
J Insect Physiol ; 98: 167-172, 2017 04.
Article in English | MEDLINE | ID: mdl-28082084

ABSTRACT

Parasite infection often results in alterations in host behaviour. These changes vary greatly in their magnitude, from slight shifts in the time spent by the host performing a given activity to the appearance of novel behaviours. The effects of parasites can differ with the age and the physiological condition of the host. Rickia wasmannii is an ectoparasitic fungal symbiont in Myrmica ants that covers the whole body surface of the host and reduces its lifespan. The fungus is present in both young and old individuals, making it an optimal subject for the study of age-related parasitic effects. We tested the effect of fungal infection on the locomotory activity of the Myrmica scabrinodis ant in different age categories. The fat content of workers was measured as a proxy for their physiological status. Based on our findings, old workers bore more thalli and were leaner than young individuals, while they tended to move at higher speeds and with a lower degree of meandering. Young individuals covered smaller distances, at slower speeds and with a higher degree of meandering. Contrary to our expectations, the infection intensity of R. wasmannii affected neither the fat content nor the locomotory activity of ant workers. However, the two age classes seem to have different strategies with regards to the relationship between fat content and distance covered. Our results suggest that characteristics of locomotory activity differ between the age classes in many respects, and are also influenced by their physiological status, but parasitism by R. wasmannii does not seem to have a straightforward effect on any of the variables studied.


Subject(s)
Ants/microbiology , Ants/physiology , Ascomycota/physiology , Age Factors , Animals , Host-Parasite Interactions , Locomotion
9.
J Invertebr Pathol ; 136: 74-80, 2016 05.
Article in English | MEDLINE | ID: mdl-26970261

ABSTRACT

The ant species Myrmica scabrinodis plays a markedly important ecological role through much of the humid grasslands of Eurasia. It hosts a species-rich community of pathogens and parasites, including Rickia wasmannii, an enigmatic member of entomoparasitic laboulbenialean fungi. This study provides a descriptive ecology of R. wasmannii by characterizing its prevalence and distribution across several hierarchical levels: colonies, individuals, and anatomic body parts. Infections were restricted to a single ant species, M. scabrinodis, and infected colonies occurred predominantly in wet habitats. Infections tended to be highly prevalent within infected colonies, often reaching 100% sample prevalence among workers. Individual infections exhibited an aggregated distribution typical to host-parasite systems. Workers from the aboveground part of nests (presumably older ones acting as foragers) were more infected than those from the belowground part. Fungal thalli could be found all over the body of the hosts, the head and the abdomen being the most infected parts of the body. The fungi's distribution among host body parts statistically differed between low versus high-intensity infections: the initial dominance of the head decreased with advancing infection. These findings may provide baseline data for future comparative or monitoring studies.


Subject(s)
Ants/microbiology , Ascomycota , Mycoses , Animals
10.
J Insect Sci ; 12: 129, 2012.
Article in English | MEDLINE | ID: mdl-23448195

ABSTRACT

Entomopathogenic Myrmicinosporidium durum Hölldobler, 1933, a fungus known to exploit several ant species, is reported for the first time in five countries: Bulgaria, the Czech Republic, Romania, Slovakia, and Turkey. The discovery of the fungus in Anatolia significantly widens its known distribution. In addition, this fungal parasite was found to utilize two hitherto unknown host species: Tetramorium sp. D (sensu Schlick-Steiner et al. 2006 ) and Tetramorium sp. E (sensu Schlick- Steiner et al. 2006 ). According to the new data, M. durum seems to be more common in Europe than previously thought, while its host range is considerably larger. In the present paper, data on its currently known distribution and host preference are discussed.


Subject(s)
Ants/microbiology , Entomophthorales/physiology , Animals , Europe , Host-Pathogen Interactions , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...