Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Zool ; 69(5): 535-551, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37637309

ABSTRACT

Selection forces often generate sex-specific differences in various traits closely related to fitness. While in adult spiders (Araneae), sexes often differ in coloration, body size, antipredator, or foraging behavior, such sex-related differences are less pronounced among immatures. However, sex-specific life-history strategies may also be adaptive for immatures. Thus, we hypothesized that among spiders, immature individuals show different life-history strategies that are expressed as sex-specific differences in body parameters and behavioral features, and also in their relationships. We used immature individuals of a protandrous jumping spider, Carrhotus xanthogramma, and examined sex-related differences. The results showed that males have higher mass and larger prosoma than females. Males were more active and more risk tolerant than females. Male activity increased with time, and larger males tended to capture the prey faster than small ones, while females showed no such patterns. However, females reacted to the threatening abiotic stimuli more with the increasing number of test sessions. In both males and females, individuals with better body conditions tended to be more risk averse. Spiders showed no sex-specific differences in interindividual behavioral consistency and in intraindividual behavioral variation in the measured behavioral traits. Finally, we also found evidence for behavioral syndromes (i.e., correlation between different behaviors), where in males, only the activity correlated with the risk-taking behavior, but in females, all the measured behavioral traits were involved. The present study demonstrates that C. xanthogramma sexes follow different life-history strategies even before attaining maturity.

2.
PeerJ ; 8: e9334, 2020.
Article in English | MEDLINE | ID: mdl-32596048

ABSTRACT

Spiders (Araneae) form abundant and diverse assemblages in agroecosystems such as fruit orchards, and thus might have an important role as natural enemies of orchard pests. Although spiders are polyphagous and opportunistic predators in general, limited information exists on their natural prey at both species and community levels. Thus, the aim of this study was to assess the natural prey (realized trophic niche) of arboreal hunting spiders, their role in trophic webs and their biological control potential with direct observation of predation events in apple orchards. Hunting spiders with prey in their chelicerae were collected in the canopy of apple trees in organic apple orchards in Hungary during the growing seasons between 2013 and 2019 and both spiders and their prey were identified and measured. Among others, the composition of the actual (captured by spiders) and the potential (available in the canopy) prey was compared, trophic niche and food web metrics were calculated, and some morphological, dimensional data of the spider-prey pairs were analyzed. Species-specific differences in prey composition or pest control ability were also discussed. By analyzing a total of 878 prey items captured by spiders, we concluded that arboreal hunting spiders forage selectively and consume a large number of apple pests; however, spiders' beneficial effects are greatly reduced by their high levels of intraguild predation and by a propensity to switch from pests to alternative prey. In this study, arboreal hunting spiders showed negative selectivity for pests, no selectivity for natural enemies and positive selectivity for neutral species. In the trophic web, the dominant hunting spider taxa/groups (Carrhotus xanthogramma, Philodromus cespitum, Clubiona spp., Ebrechtella tricuspidata, Xysticus spp. and 'Other salticids') exhibit different levels of predation on different prey groups and the trophic web's structure changes depending on the time of year. Hunting spiders show a high functional redundancy in their predation, but contrary to their polyphagous nature, the examined spider taxa showed differences in their natural diet, exhibited a certain degree of prey specialization and selected prey by size and taxonomic identity. Guilds (such as stalkers, ambushers and foliage runners) did not consistently predict either prey composition or predation selectivity of arboreal hunting spider species. From the economic standpoint, Ph. cespitum and Clubiona spp. were found to be the most effective natural enemies of apple pests, especially of aphids. Finally, the trophic niche width of C. xanthogramma and Ph. cespitum increased during ontogeny, resulting in a shift in their predation. These results demonstrate how specific generalist predators can differ from each other in aspects of their predation ecology even within a relatively narrow taxonomic group.

3.
PeerJ ; 6: e5269, 2018.
Article in English | MEDLINE | ID: mdl-30065875

ABSTRACT

Climate change is altering the phenology of trophically linked organisms, leading to increased asynchrony between species with unknown consequences for ecosystem services. Although phenological mismatches are reported from several ecosystems, experimental evidence for altering multiple ecosystem services is hardly available. We examined how the phenological shift of apple trees affected the abundance and diversity of pollinators, generalist and specialist herbivores and predatory arthropods. We stored potted apple trees in the greenhouse or cold store in early spring before transferring them into orchards to cause mismatches and sampled arthropods on the trees repeatedly. Assemblages of pollinators on the manipulated and control trees differed markedly, but their overall abundance was similar indicating a potential insurance effect of wild bee diversity to ensure fruit set in flower-pollinator mismatch conditions. Specialized herbivores were almost absent from manipulated trees, while less-specialized ones showed diverse responses, confirming the expectation that more specialized interactions are more vulnerable to phenological mismatch. Natural enemies also responded to shifted apple tree phenology and the abundance of their prey. While arthropod abundances either declined or increased, species diversity tended to be lower on apple trees with shifted phenology. Our study indicates novel results on the role of biodiversity and specialization in plant-insect mismatch situations.

4.
Exp Appl Acarol ; 62(4): 525-37, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24248910

ABSTRACT

We examined the faunal composition and abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards under different pest management systems in Hungary. A total of 30 apple orchards were surveyed, including abandoned and organic orchards and orchards where integrated pest management (IPM) or broad spectrum insecticides (conventional pest management) were applied. A total of 18 phytoseiid species were found in the canopy of apple trees. Species richness was greatest in the organic orchards (mean: 3.3 species/400 leaves) and the least in the conventional orchards (1.4), with IPM (2.1) and abandoned (2.7) orchards showing intermediate values. The phytoseiid community's Rényi diversity displayed a similar pattern. However, the total phytoseiid abundance in the orchards with different pest management systems did not differ, with abundance varying between 1.8 and 2.6 phytoseiids/10 leaves. Amblyseius andersoni, Euseius finlandicus, and Typhlodromus pyri were the three most common species. The relative abundance of A. andersoni increased with the pesticide load of the orchards whereas the relative abundance of E. finlandicus decreased. The abundance of T. pyri did not change in the apple orchards under different pest management strategies; regardless of the type of applied treatment, they only displayed greater abundance in five of the orchards. The remaining 15 phytoseiid species only occurred in small numbers, mostly from the abandoned and organic orchards. We identified a negative correlation between the abundance of T. pyri and the other phytoseiids in the abandoned and organic orchards. However, we did not find any similar link between the abundance of A. andersoni and E. finlandicus.


Subject(s)
Malus , Mites/physiology , Pest Control/methods , Animals , Biodiversity , Mites/classification , Population Dynamics
5.
J Environ Biol ; 29(2): 263-6, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18831387

ABSTRACT

Along term ecological research was carried out in a Hungarian oak forest, in "Bükk" National Park starting with 1972. During the faunistical studies 3,602 insect species and more than 200,000 individuals were collected. The dominant orders were Coleoptera (1,051 species), Lepidoptera (803 species), Hymenoptera (470 species) and Diptera (400 species). The relative species abundance (RSA) for all insects collected in all years of sampling period suggests a rather J shape curve than a not clear scaling property. This means that we were able to identify almost three quarters of the insect species from one ha European oak forest during the survey (from 1987 to 2003), and two third of the staphylinides expected. Considering the staphylinid fauna a total number of 160 species and 4,022 individuals were collected. The most widely occurring species in dominance order were: Ocypus biharicus, Pseudocypus mus, Atheta gagatina, Philonthus quisquiliarius, Oxypoda acuminate, Platydracus chalcocephalus, Atheta crassicomis, Latrimaeum atrocephalum, Haploglossa puncticollis, Philonthus succicola and Anotylus mutator. The pooled value of alpha diversity was 1.51. The Shannon-Weiner Index (H') was relatively high (3.29) in comparison with other studies.


Subject(s)
Coleoptera/growth & development , Ecology , Environmental Monitoring , Quercus , Trees , Animals , Biodiversity , Population Dynamics , Research , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...