Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36677237

ABSTRACT

The cutting quality and strength of strips cut with femtosecond-duration pulses were investigated for different thicknesses of borosilicate glass plates. The laser pulse duration was 350 fs, and cutting was performed in two environments: ambient air and water. When cutting in water, a thin flowing layer of water was formed at the front surface of the glass plate by spraying water mist next to a laser ablation zone. The energy of pulses greatly exceeded the critical self-focusing threshold in water, creating conditions favorable for laser beam filament formation. Laser cutting parameters were individually optimized for different glass thicknesses (110-550 µm). The results revealed that laser cutting of borosilicate glass in water is favorable for thicker glass (300-550 µm) thanks to higher cutting quality, higher effective cutting speed, and characteristic strength. On the other hand, cutting ultrathin glass plates (110 µm thickness) demonstrated almost identical performance and cutting quality results in both environments. In this paper, we studied cut-edge defect widths, cut-sidewall roughness, cutting throughput, characteristic strength, and band-like damage formed at the back surface of laser-cut glass strips.

2.
Micromachines (Basel) ; 13(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630252

ABSTRACT

In this study, the cutting of borosilicate glass plates in ambient air and water with a 355 nm wavelength picosecond laser was carried out. Low (2.1-2.75 W) and high (15.5 W) average laser power cutting regimes were studied. Thorough attention was paid to the effect of the hatch distance on the cutting quality and characteristic strength of glass strips cut in both environments. At optimal cutting parameters, ablation efficiency and cutting rates were the highest but cut sidewalls were covered with periodically recurring ridges. Transition to smaller hatch values improved the cut sidewall quality by suppressing the ridge formation, but negatively affected the ablation efficiency and overall strength of glass strips. Glass strips cut in water in the low-laser-power regime had the highest characteristic strength of 117.6 and 107.3 MPa for the front and back sides, respectively. Cutting in a high-laser-power regime was only carried out in water. At 15.5 W, the ablation efficiency and effective cutting speed per incident laser power increased by 16% and 22%, respectively, compared with cutting in water in a low-laser-power regime.

3.
Opt Express ; 30(3): 4564-4582, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209690

ABSTRACT

The growing applicability of glass materials drives the development of novel processing methods, which usually lack comprehensive comparison to conventional or state-of-art ones. That is especially delicate for assessing the flexural strength of glass, which is highly dependent on many factors. This paper compares the traditional top-down laser ablation methods in the air to those assisted with a flowing water film using picosecond pulses. Furthermore, the bottom-up cutting method using picosecond and nanosecond pulses is investigated as well. The cutting quality, sidewall roughness, subsurface damage and the four-point bending strength of 1 mm-thick soda-lime glass are evaluated. The flexural strength of top-down cut samples is highly reduced due to heat accumulation-induced cracks, strictly orientated along the sidewall. The subsurface crack propagation can be reduced using water-assisted processing, leading to the highest flexural strength among investigated techniques. Although bottom-up cut samples have lower flexural strength than water-assisted, bottom-up technology allows us to achieve higher cutting speed, taper-less sidewalls, and better quality on the rear side surface and is preferable for thick glass processing.

4.
Sci Rep ; 7: 40502, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084403

ABSTRACT

In this paper, we investigate the laser processing of the CIGS thin-film solar cells in the case of the high-speed regime. The modern ultra-short pulsed laser was used exhibiting the pulse repetition rate of 1 MHz. Two main P3 scribing approaches were investigated - ablation of the full layer stack to expose the molybdenum back-contact, and removal of the front-contact only. The scribe quality was evaluated by SEM together with EDS spectrometer followed by electrical measurements. We also modelled the electrical behavior of a device at the mini-module scale taking into account the laser-induced damage. We demonstrated, that high-speed process at high laser pulse repetition rate induced thermal damage to the cell. However, the top-contact layer lift-off processing enabled us to reach 1.7 m/s scribing speed with a minimal device degradation. Also, we demonstrated the P3 processing in the ultra-high speed regime, where the scribing speed of 50 m/s was obtained. Finally, selected laser processes were tested in the case of mini-module scribing. Overall, we conclude, that the top-contact layer lift-off processing is the only reliable solution for high-speed P3 laser scribing, which can be implemented in the future terawatt-scale photovoltaic production facilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...