Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 43(1): 253-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602558

ABSTRACT

The potential for beneficial use of flue gas desulfurization-derived gypsum (FGDG), a coal combustion byproduct, as an agricultural soil amendment is currently being debated. This study investigated the hypothesis that Hg released to air from FGDG will be reduced when amended to planted and bare soils. The potential for enhanced methylmercury (MeHg) production and Hg uptake by plants in soils amended with FGDG was also investigated. Flue gas desulfurization-derived gypsum from three sources was homogenized into three soils at 4.5, 45, and 170 t ha and applied at 4.9 t ha as a thin layer to simulate tilled and no-till applications, respectively. Twenty-four-hour Hg flux was measured from unamended and FGDG-amended soils on a seasonal time step over 1 yr and after disturbing, watering, and planting. Methylmercury in soil, irrigation drainage, and total Hg in plant tissues were quantified. Results should be interpreted within the confines of the experimental setting and materials used for this study. Total Hg concentrations in soils, homogenized with FGDG, were below that considered representative of soil with background values (<100 ng g). Emissions from amended soils were higher initially relative to unamended soils but became similar over time. Significantly less Hg (2%) was lost to the air from FGDG-amended soils (90 g FGDG added for lowest application) than that released from the FGDG alone (30-70%) (50 g FGDG) over 1 yr. Total Hg and MeHg in irrigation drainage and total Hg concentrations measured in plants were similar for amended and unamended soils.

2.
Sci Total Environ ; 367(1): 222-33, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16406491

ABSTRACT

Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36+/-0.13 g ha(-1), respectively, with litter and vegetation being the most important sources.


Subject(s)
Desert Climate , Ecosystem , Fires , Mercury/analysis , Soil Pollutants/analysis , Trees/growth & development , Altitude , California , Nevada
SELECTION OF CITATIONS
SEARCH DETAIL
...