Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 55(46): 14267-14271, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27714900

ABSTRACT

Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors.

2.
J Phys Chem B ; 120(32): 7795-806, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27447850

ABSTRACT

A newly developed coarse-grained model called BioModi is utilized to elucidate the effects of temperature and concentration on DNA hybridization in self-assembly. Large-scale simulations demonstrate that complementary strands of either the tetrablock sequence or randomized sequence with equivalent number of cytosine or guanine nucleotides can form completely hybridized double helices. Even though the end states are the same for the two sequences, there exist multiple kinetic pathways that are populated with a wider range of transient aggregates of different sizes in the system of random sequences compared to that of the tetrablock sequence. The ability of these aggregates to undergo the strand displacement mechanism to form only double helices depends upon the temperature and DNA concentration. On one hand, low temperatures and high concentrations drive the formation and enhance stability of large aggregating species. On the other hand, high temperatures destabilize base-pair interactions and large aggregates. There exists an optimal range of moderate temperatures and low concentrations that allow minimization of large aggregate formation and maximization of fully hybridized dimers. Such investigation on structural dynamics of aggregating species by two closely related sequences during the self-assembly process demonstrates the importance of sequence design in avoiding the formation of metastable species. Finally, from kinetic modeling of self-assembly dynamics, the activation energy for the formation of double helices was found to be in agreement with experimental results. The framework developed in this work can be applied to the future design of DNA nanostructures in both fields of structural DNA nanotechnology and dynamic DNA nanotechnology wherein equilibrium end states and nonequilibrium dynamics are equally important requiring investigation in cooperation.


Subject(s)
DNA/chemistry , Models, Genetic , Molecular Dynamics Simulation , Nucleic Acid Hybridization , Temperature , DNA/metabolism , Kinetics , Nucleic Acid Hybridization/physiology
3.
J Phys Chem B ; 119(35): 11459-65, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26295733

ABSTRACT

Perylene-3,4,9,10-tetracarboxylic diimides (PTCDIs) are a well-known class of organic materials. Recently, these molecules have been incorporated within DNA as base surrogates, finding ready applications as probes of DNA structure and function. However, the assembly dynamics and kinetics of PTCDI DNA base surrogates have received little attention to date. Herein, we employ constant temperature molecular dynamics simulations to gain an improved understanding of the assembly of PTCDI dimers and trimers. We also use replica-exchange molecular dynamics simulations to elucidate the energetic landscape dictating the formation of stacked PTCDI structures. Our studies provide insight into the equilibrium configurations of multimeric PTCDIs and hold implications for the construction of DNA-inspired systems from perylene-derived organic semiconductor building blocks.


Subject(s)
DNA/chemistry , Imides/chemistry , Molecular Dynamics Simulation , Perylene/analogs & derivatives , Dimerization , Kinetics , Perylene/chemistry , Spectrum Analysis , Temperature
4.
J Phys Chem B ; 119(5): 1823-34, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25581253

ABSTRACT

A novel coarse-grained model is developed to elucidate thermodynamics and kinetic mechanisms of DNA self-assembly. It accounts for sequence and solvent conditions to capture key experimental results such as sequence-dependent thermal property and salt-dependent persistence length of ssDNA and dsDNA. Moreover, constant-temperature simulations on two single strands of a homogeneous sequence show two main mechanisms of hybridization: a slow slithering mechanism and a one-order faster zippering mechanism. Furthermore, large-scale simulations at a high DNA strand concentration demonstrate that DNA self-assembly is a robust and enthalpically driven process in which the formation of double helices is deciphered to occur via multiple self-assembly pathways including the strand displacement mechanism. However, sequence plays an important role in shifting the majority of one pathway over the others and controlling size distribution of self-assembled aggregates. This study yields a complex picture on the role of sequence on programmable self-assembly and demonstrates a promising simulation tool that is suitable for studies in DNA nanotechnology.


Subject(s)
DNA/chemistry , DNA/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Kinetics , Molecular Dynamics Simulation , Nucleic Acid Conformation , Nucleic Acid Hybridization , Phase Transition , Thermodynamics
5.
Langmuir ; 31(1): 315-24, 2015.
Article in English | MEDLINE | ID: mdl-25488898

ABSTRACT

Peptide amphiphiles are known to form a variety of distinctive self-assembled nanostructures (including cylindrical nanofibers in hydrogels) dependent upon the solvent conditions. Using a novel coarse-grained model, large-scale molecular dynamics simulations are performed on a system of 800 peptide amphiphiles (sequence, palmitoyl-Val3Ala3Glu3) to elucidate kinetic mechanisms of molecular assembly as a function of the solvent conditions. The assembly process is found to occur via a multistep process with transient intermediates that ultimately leads to the stabilized nanostructures including open networks of ß-sheets, cylindrical nanofibers, and elongated micelles. Different kinetic mechanisms are compared in terms of peptide secondary structures, solvent-accessible surface area, radius of gyration, relative shape anisotropy, intra/intermolecular interactions, and aggregate size dynamics to provide insightful information for the design of functional biomaterials.


Subject(s)
Molecular Dynamics Simulation , Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Nanostructures/chemistry , Protein Structure, Secondary , Solvents/chemistry
6.
Biomacromolecules ; 15(9): 3313-20, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25068712

ABSTRACT

Peptide amphiphiles (PA) offer the potential of incorporating biological function into synthetic materials for tissue engineering in regenerative medicine. These hybrid conjugates are known to undergo self-assembly starting from single molecules to nanofibers before turning into hydrogel scaffolds-such a process involves conformational changes in secondary structures of peptides. Therefore, insights on the ability of peptide amphiphiles to form secondary structure as single molecules are useful for understanding self-assembly behavior. We report here a molecular simulation study of peptide folding by two PA sequences, each contains an alkyl tail and short peptide segment. The alkyl tail is observed to play two opposing roles in modulating sequence-dependent folding kinetics and thermodynamics. On one hand, it restricts conformational freedom reducing the entropic cost of folding, which is thus promoted. On the other hand, it acts as an interaction site with nonpolar peptide residues, blocking the peptide from helix nucleation, which reduces folding.


Subject(s)
Molecular Dynamics Simulation , Nanofibers/chemistry , Peptides/chemistry , Protein Folding , Protein Structure, Secondary
7.
Langmuir ; 30(26): 7745-54, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24915982

ABSTRACT

Using a novel coarse-grained model, large-scale molecular dynamics simulations were performed to examine self-assembly of 800 peptide amphiphiles (sequence palmitoyl-V3A3E3). Under suitable physiological conditions, these molecules readily assemble into nanofibers leading to hydrogel construction as observed in experiments. Our simulations capture this spontaneous self-assembly process, including formation of secondary structure, to identify morphological transitions of distinctive nanostructures. As the hydrophobic interaction is increased, progression from open networks of secondary structures toward closed cylindrical nanostructures containing either ß-sheets or random coils are observed. Moreover, temperature effects are also determined to play an important role in regulating formation of secondary structures within those nanostructures. These understandings of the molecular interactions involved and the role of environmental factors on hydrogel formation provide useful insight for development of innovative smart biomaterials for biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary
8.
Adv Healthc Mater ; 2(10): 1388-400, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23554376

ABSTRACT

Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of ß-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Peptides/chemistry , Amino Acid Sequence , Micelles , Nanofibers/chemistry , Peptides/metabolism , Protein Structure, Secondary , Static Electricity , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...