Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Toxicol ; 6: 1346767, 2024.
Article in English | MEDLINE | ID: mdl-38694816

ABSTRACT

Introduction: The U. S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP) Tier 1 assays are used to screen for potential endocrine system-disrupting chemicals. A model integrating data from 16 high-throughput screening assays to predict estrogen receptor (ER) agonism has been proposed as an alternative to some low-throughput Tier 1 assays. Later work demonstrated that as few as four assays could replicate the ER agonism predictions from the full model with 98% sensitivity and 92% specificity. The current study utilized chemical clustering to illustrate the coverage of the EDSP Universe of Chemicals (UoC) tested in the existing ER pathway models and to investigate the utility of chemical clustering to evaluate the screening approach using an existing 4-assay model as a test case. Although the full original assay battery is no longer available, the demonstrated contribution of chemical clustering is broadly applicable to assay sets, chemical inventories, and models, and the data analysis used can also be applied to future evaluation of minimal assay models for consideration in screening. Methods: Chemical structures were collected for 6,947 substances via the CompTox Chemicals Dashboard from the over 10,000 UoC and grouped based on structural similarity, generating 826 chemical clusters. Of the 1,812 substances run in the original ER model, 1,730 substances had a single, clearly defined structure. The ER model chemicals with a clearly defined structure that were not present in the EDSP UoC were assigned to chemical clusters using a k-nearest neighbors approach, resulting in 557 EDSP UoC clusters containing at least one ER model chemical. Results and Discussion: Performance of an existing 4-assay model in comparison with the existing full ER agonist model was analyzed as related to chemical clustering. This was a case study, and a similar analysis can be performed with any subset model in which the same chemicals (or subset of chemicals) are screened. Of the 365 clusters containing >1 ER model chemical, 321 did not have any chemicals predicted to be agonists by the full ER agonist model. The best 4-assay subset ER agonist model disagreed with the full ER agonist model by predicting agonist activity for 122 chemicals from 91 of the 321 clusters. There were 44 clusters with at least two chemicals and at least one agonist based upon the full ER agonist model, which allowed accuracy predictions on a per-cluster basis. The accuracy of the best 4-assay subset ER agonist model ranged from 50% to 100% across these 44 clusters, with 32 clusters having accuracy ≥90%. Overall, the best 4-assay subset ER agonist model resulted in 122 false-positive and only 2 false-negative predictions compared with the full ER agonist model. Most false positives (89) were active in only two of the four assays, whereas all but 11 true positive chemicals were active in at least three assays. False positive chemicals also tended to have lower area under the curve (AUC) values, with 110 out of 122 false positives having an AUC value below 0.214, which is lower than 75% of the positives as predicted by the full ER agonist model. Many false positives demonstrated borderline activity. The median AUC value for the 122 false positives from the best 4-assay subset ER agonist model was 0.138, whereas the threshold for an active prediction is 0.1. Conclusion: Our results show that the existing 4-assay model performs well across a range of structurally diverse chemicals. Although this is a descriptive analysis of previous results, several concepts can be applied to any screening model used in the future. First, the clustering of the chemicals provides a means of ensuring that future screening evaluations consider the broad chemical space represented by the EDSP UoC. The clusters can also assist in prioritizing future chemicals for screening in specific clusters based on the activity of known chemicals in those clusters. The clustering approach can be useful in providing a framework to evaluate which portions of the EDSP UoC chemical space are reliably covered by in silico and in vitro approaches and where predictions from either method alone or both methods combined are most reliable. The lessons learned from this case study can be easily applied to future evaluations of model applicability and screening to evaluate future datasets.

2.
Front Toxicol ; 6: 1347364, 2024.
Article in English | MEDLINE | ID: mdl-38529103

ABSTRACT

Introduction: Computational models using data from high-throughput screening assays have promise for prioritizing and screening chemicals for testing under the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP). The purpose of this work was to demonstrate a data processing method for the determination of optimal minimal assay batteries from a larger comprehensive model, to provide a uniform method of evaluating the performance of future minimal assay batteries compared with the androgen receptor (AR) pathway model, and to incorporate chemical cluster analysis into this evaluation. Although several of the assays in the AR pathway model are no longer available through the original vendor, this approach could be used for future evaluations of minimal assay models for prioritization and screening. Methods: We compared two previously published models and found that an expanded 14-assay model had higher sensitivity for antagonists, whereas the original 11-assay model had slightly higher sensitivity for agonists. We then investigated subsets of assays in the original AR pathway model to optimize overall testing strategies that minimize cost while maintaining sensitivity across a broad chemical space. Results and Discussion: Evaluation of the critical assays across subset models derived from the 14-assay model identified three critical assays for predicting antagonism and two critical assays for predicting agonism. A minimum of nine assays is required for predicting agonism and antagonism with high sensitivity (95%). However, testing workflows guided by chemical structure-based clusters can reduce the average number of assays needed per chemical by basing the assays selected for testing on the likelihood of a chemical being an AR agonist, according to its structure. Our results show that a multi-stage testing workflow can provide 95% sensitivity while requiring only 48% of the resources required for running all assays from the original full models. The resources can be reduced further by incorporating in silico activity predictions. Conclusion: This work illustrates a data-driven approach that incorporates chemical clustering and simultaneous consideration of antagonism and agonism mechanisms to more efficiently screen chemicals. This case study provides a proof of concept for prioritization and screening strategies that can be utilized in future analyses to minimize the overall number of assays needed for predicting AR activity, which will maximize the number of chemicals that can be tested and allow data-driven prioritization of chemicals for further screening under the EDSP.

3.
Toxicol Sci ; 193(2): 131-145, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37071731

ABSTRACT

The U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP) is tasked with assessing chemicals for their potential to perturb endocrine pathways, including those controlled by androgen receptor (AR). To address challenges associated with traditional testing strategies, EDSP is considering in vitro high-throughput screening assays to screen and prioritize chemicals more efficiently. The ability of these assays to accurately reflect chemical interactions in nonmammalian species remains uncertain. Therefore, a goal of the EDSP is to evaluate how broadly results can be extrapolated across taxa. To assess the cross-species conservation of AR-modulated pathways, computational analyses and systematic literature review approaches were used to conduct a comprehensive analysis of existing in silico, in vitro, and in vivo data. First, molecular target conservation was assessed across 585 diverse species based on the structural similarity of ARs. These results indicate that ARs are conserved across vertebrates and are predicted to share similarly susceptibility to chemicals that interact with the human AR. Systematic analysis of over 5000 published manuscripts was used to compile in vitro and in vivo cross-species toxicity data. Assessment of in vitro data indicates conservation of responses occurs across vertebrate ARs, with potential differences in sensitivity. Similarly, in vivo data indicate strong conservation of the AR signaling pathways across vertebrate species, although sensitivity may vary. Overall, this study demonstrates a framework for utilizing bioinformatics and existing data to build weight of evidence for cross-species extrapolation and provides a technical basis for extrapolating hAR-based data to prioritize hazard in nonmammalian vertebrate species.


Subject(s)
Endocrine Disruptors , Receptors, Androgen , Animals , United States , Humans , Receptors, Androgen/metabolism , United States Environmental Protection Agency , Endocrine System/chemistry , Endocrine System/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , High-Throughput Screening Assays/methods
4.
Environ Int ; 169: 107363, 2022 11.
Article in English | MEDLINE | ID: mdl-36057470

ABSTRACT

Systematic evidence maps (SEMs) are increasingly used to inform decision-making and risk management priority-setting and to serve as problem formulation tools to refine the focus of questions that get addressed in full systematic reviews. Within the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) Integrated Risk Information System (IRIS), SEMs have been used to inform data gaps, determine the need for updated assessments, inform assessment priorities, and inform development of study evaluation considerations, among other uses. Increased utilization of SEMs across the environmental health field has the potential to increase transparency and efficiency for data gathering, problem formulation, read-across, and evidence surveillance. Use of the SEM templates published in the companion text (Thayer et al.) can promote harmonization in the environmental health community and create more opportunities for sharing extracted content.


Subject(s)
Environmental Health , Risk Management , Information Systems , Risk Assessment , United States , United States Environmental Protection Agency
5.
Toxicol In Vitro ; 47: 103-119, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29146384

ABSTRACT

The Endocrine Disruptor Screening Program (EDSP) is transitioning from traditional testing methods to integrating ToxCast/Tox21 in vitro high-throughput screening assays for identifying chemicals with endocrine bioactivity. The ToxCast high-throughput H295R steroidogenesis assay may potentially replace the low-throughput assays currently used in the EDSP Tier 1 battery to detect chemicals that alter the synthesis of androgens and estrogens. Herein, we describe an approach for identifying in vitro candidate reference chemicals that affect the production of androgens and estrogens in models of steroidogenesis. Candidate reference chemicals were identified from a review of H295R and gonad-derived in vitro assays used in methods validation and published in the scientific literature. A total of 29 chemicals affecting androgen and estrogen levels satisfied all criteria for positive reference chemicals, while an additional set of 21 and 15 chemicals partially fulfilled criteria for positive reference chemicals for androgens and estrogens, respectively. The identified chemicals included pesticides, pharmaceuticals, industrial and naturally-occurring chemicals with the capability to increase or decrease the levels of the sex hormones in vitro. Additionally, 14 and 15 compounds were identified as potential negative reference chemicals for effects on androgens and estrogens, respectively. These candidate reference chemicals will be informative for performance-based validation of in vitro steroidogenesis models.


Subject(s)
Adrenal Cortex Hormones/biosynthesis , Adrenal Cortex/drug effects , Endocrine Disruptors/toxicity , Estradiol/biosynthesis , Ovary/drug effects , Testis/drug effects , Testosterone/biosynthesis , Adrenal Cortex/cytology , Adrenal Cortex/metabolism , Adrenal Cortex Hormones/agonists , Adrenal Cortex Hormones/antagonists & inhibitors , Adrenal Cortex Hormones/metabolism , Animals , Cell Line , Cells, Cultured , Endocrine Disruptors/standards , Estradiol/agonists , Estradiol/chemistry , Estradiol/metabolism , Female , Guidelines as Topic , High-Throughput Screening Assays , Humans , Male , Osmolar Concentration , Ovary/cytology , Ovary/metabolism , Reference Standards , Small Molecule Libraries , Testis/cytology , Testis/metabolism , Testosterone/agonists , Testosterone/antagonists & inhibitors , Testosterone/metabolism , Toxicity Tests, Acute/methods , Toxicity Tests, Acute/standards , Validation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...