Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 92(suppl 2): e20190459, 2020.
Article in English | MEDLINE | ID: mdl-33084759

ABSTRACT

In order to characterize Patagonian (Argentina) ecoregions using non-marine ostracods, their associations in 69 environments were assessed. Twenty eight taxa were recorded, including 12 endemic of the Neotropical region. Our results indicate that Patagonian ostracods are mainly influenced by electrical conductivity (EC), altitude, pH, and temperature; and shows a correlation with Argentinian ecoregions. Assemblage I is composed of sites located at high altitude in the Andean Patagonian forest ecoregion. Host waters have low temperature, EC and pH, and support as representative species Cypris pubera, Eucypris virens, Bradleystrandesia fuscata, Tonacypris lutaria and Amphicypris nobilis. Assemblage II, related to mid-altitude environments in the Patagonian Steppe ecoregion, thrived in waters with moderate to high EC, and alkaline pH values. Dominant species includes Limnocythere rionegroensis, L. patagonica, E. virgata, Riocypris whatleyi, Riocypris sarsi, Newnhamia patagonica, Kapcypridopsis megapodus, Ilyocypris ramirezi and Penthesinelula incae. Assemblage III inhabited environments within Monte and Espinal ecoregions, situated in the eastern part of the study area at low altitude, EC moderate and temperate waters, supporting Heterocypris hyalinus, Amphicypris argentinensis, Sarscypridopsis aculeata, Cypridopsis vidua, Herpetocypris intermedia and Chlamidotheca incisa. Our results indicates that Argentinian Patagonia hosts a diverse ostracod fauna and highlights their capacity as proxies in ecological and palaeoenvironmental studies.


Subject(s)
Crustacea , Forests , Altitude , Animals , Argentina
2.
Proc Natl Acad Sci U S A ; 109(19): E1134-42, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22331892

ABSTRACT

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Subject(s)
Climate , Global Warming , Ice Cover , Temperature , Atmosphere/analysis , Biological Evolution , Carbon Dioxide/metabolism , Ecosystem , Geography , Methane/metabolism , Models, Theoretical , Monte Carlo Method , Oxygen/metabolism , Principal Component Analysis , Seawater , Time Factors , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...