Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Exp Psychol Learn Mem Cogn ; 50(5): 833-844, 2024 May.
Article in English | MEDLINE | ID: mdl-37439728

ABSTRACT

We investigated the relationship between Theory of Mind (ToM) and communicative cooperation. Specifically, we examined whether communicative cooperation is affected by the ToM ability of one's cooperative partner as well as their own. ToM is the attribution of mental states to oneself and others; cooperation is the joint action that leads to achieving a shared goal. We measured cooperation using a novel communicative cooperation game completed by participants in pairs. ToM was measured via the Movies for Assessment of Social Cognition (MASC) task and fluid intelligence via the Raven task. Findings of 350 adults show that ToM scores of both players were predictors of cooperative failure, whereas Raven scores were not. Furthermore, participants were split into low- and high-ToM groups through a median split of the MASC scores: high-ToM individuals committed significantly fewer cooperative errors compared to their low-ToM counterparts. Therefore, we found a direct relationship between ToM and cooperation. Interestingly, we also examined how ToM scores of paired participants determine cooperation. We found that pairs with two high-ToM individuals committed significantly fewer errors compared to pairs with two low-ToM individuals. We speculate that reduced cooperation in low-low ToM pairs is a result of less efficient development of conceptual alignment and recovery from misalignment, compared to high-high ToM dyads. For the first time, we thus demonstrate that it is not all about you; both cooperative partners make key, independent, contributions to cooperative outcomes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Theory of Mind , Adult , Humans , Communication , Social Perception
2.
Int J Nanomedicine ; 18: 3825-3850, 2023.
Article in English | MEDLINE | ID: mdl-37457801

ABSTRACT

Purpose: Breast cancer (BC) is the most common malignant tumor in women, which most often originates from the epithelial tissue of the breast gland. One of the most recommended kinds of treatment is radiotherapy (RT), but irradiation (IR) can affect not only the cancer tumor but also the healthy tissue around it. Au nanoparticles (AuNPs) were proposed as a radiosensitizing agent for RT which would allow for lower radiation doses, reducing the negative radiation effects on healthy tissues. The main objective of the study is to assess the dependence on the radiosensitivity of BC (MDA-MB-231) and normal mammary gland epithelial cells (MCF12A) to ionizing radiation, caused by functionalized AuNPs under diverse conditions. Methods: The viability, uptake, reactive oxygen species induction, and mitochondrial membrane potential in cells were analyzed applying a time and concentration-dependent manner. After different incubation times with AuNPs, cells were exposed to 2 Gy. The determination of radiation effect in combination with AuNPs was investigated using the clonogenic assay, p53, and γH2AX level, as well as, Annexin V staining. Results: Our results highlighted the strong need for assessing the experimental conditions' optimization before the AuNPs will be implemented with IR. Moreover, results indicated that AuNPs did not act universally in cells. Conclusion: AuNPs could be a promising tool as a radiotherapy sensitizing agent, but it should be specified and deeply investigated under what conditions it will be applied taking into consideration not only AuNPs modifications but also the model and experimental conditions.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Radiation-Sensitizing Agents , Female , Humans , Breast Neoplasms/pathology , Gold/pharmacology , Gold/therapeutic use , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use
3.
Pharmaceutics ; 15(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986725

ABSTRACT

Gold nanoparticles (AuNPs), as an agent enhancing radiosensitivity, play a key role in the potential treatment of breast cancer (BC). Assessing and understanding the kinetics of modern drug delivery systems is a crucial element that allows the implementation of AuNPs in clinical treatment. The main objective of the study was to assess the role of the properties of gold nanoparticles in the response of BC cells to ionizing radiation by comparing 2D and 3D models. In this research, four kinds of AuNPs, different in size and PEG length, were used to sensitize cells to ionizing radiation. The in vitro viability, uptake, and reactive oxygen species generation in cells were investigated in a time- and concentration-dependent manner using 2D and 3D models. Next, after the previous incubation with AuNPs, cells were irradiated with 2 Gy. The assessment of the radiation effect in combination with AuNPs was analyzed using the clonogenic assay and γH2AX level. The study highlights the role of the PEG chain in the efficiency of AuNPs in the process of sensitizing cells to ionizing radiation. The results obtained imply that AuNPs are a promising solution for combined treatment with radiotherapy.

4.
Eur J Neurosci ; 57(1): 129-147, 2023 01.
Article in English | MEDLINE | ID: mdl-36373596

ABSTRACT

Complex cognitive tasks require different stages of processing (i.e. conflict monitoring, attentional resource allocation and stimulus categorisation). Performance differences between bilinguals and monolinguals on conflict tasks can be affected by the balance of these sub-processes. The current study investigated the effect of bilingualism on these sub-processes during a conflict task with medium monitoring demand. Behavioural responses and evoked potentials from bilinguals and monolinguals were examined during a flanker task with 25% incongruent trials. Behavioural differences were analysed by means of averaged response times and exponentially modified Gaussian analyses of response time distributions. For evoked potentials, the study focussed on N2 (reflecting conflict monitoring) and P3 responses (reflecting allocation of attentional resources for cognitive control). Bilinguals had significantly longer response distribution tails compared to monolinguals. Bilinguals were shown to have a more pronounced N2 and smaller P3 compared to monolinguals, independent of condition, suggesting a different balance of sub-processes for the two groups. This suggests that bilinguals were engaged more strongly in monitoring processes, leading to the allocation of fewer attentional resources during stimulus categorisation. Additionally, the P3 amplitudes were negatively related with the length of response distribution tails for bilinguals. These results are consistent with enhanced conflict monitoring in bilinguals that led to reduced engagement of attentional resources for stimulus categorisation. This enhanced conflict monitoring could lead to occasional extremely slow responses. Thus, the bilingual experience appears to impact the balance of cognitive control processes during conflict tasks, which might only be reflected in a minority of responses.


Subject(s)
Multilingualism , Reaction Time/physiology , Evoked Potentials/physiology , Attention/physiology
5.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897873

ABSTRACT

This article describes how crystalline or fibrous nanocellulose influences the mechanical properties of paper substrate. In this context, we used commercially available cellulose nanocrystals, mechanically prepared cellulose nanofibers dispersed in water or ethanol, and carboxy cellulose nanofibers. Selective reinforcement of the paper treated with the nanocellulose samples mentioned above was observed. The change in the fibre structure was assessed using scanning electron microscopy, roentgenography, and spectroscopy techniques. In addition, the effect of nanocellulose coating on physical properties was evaluated, specifically tensile index, elongation coefficient, Elmendorf tear resistance, Bendtsen surface roughness, Bendtsen air permeability, and bending strength. It can be concluded that the observed decrease in the strength properties of the paper after applying some NC compositions is due to the loss of potential disturbances in hydrogen bonds between the nanocellulose dispersed in ethanol and the paper substrate. On the other hand, significantly increased strength was observed in the case of paper reinforced with nanocellulose functionalized with carboxyl groups.


Subject(s)
Cellulose , Nanofibers , Paper , Cellulose/chemistry , Ethanol , Nanofibers/chemistry , Nanoparticles/chemistry , Water/chemistry
6.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682674

ABSTRACT

19F Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation-anion as a relative translation diffusion coefficient. The diffusion coefficients have been compared with the corresponding cation-cation and anion-anion diffusion coefficients, revealing a correlation in the relative translation movement of the anion and the triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, and dodecyltriethylammonium cations, whereas the relative translation diffusion between the anion and the cations with the longer alkyl chains, decyltriethylammonium and hexadecyltriethylammonium, remains rather uncorrelated (correlated to a much lesser extent).


Subject(s)
Ionic Liquids , Anions , Cations , Diffusion , Imides
7.
Molecules ; 27(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408623

ABSTRACT

Starch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. 1H NMR spin-lattice relaxation experiments were performed for the collection of products in a broad frequency range from 4 KHz to 30 MHz to get insight into the influence of different sugar types and SPI on the dynamics of water in composite gel systems. The relaxation data have been decomposed into relaxation contributions associated with two different pools of water molecules characterized by different mobility. The translation dynamics of water molecules has been quantitatively described in terms of a dedicated relaxation model. The influence of the sample composition (the type of sugar and/or the presence of SPI) on the water mobility was thoroughly discussed. The results indicate that the addition of soy protein does not affect water dynamics for samples including sucrose. In addition, as the complementary measurements, physical properties of the products, such as the moisture content, water activity and texture, were investigated in terms of X-ray diffraction and thermogravimetric analysis.


Subject(s)
Starch , Water , Magnetic Resonance Spectroscopy , Soybean Proteins/chemistry , Starch/chemistry , Sugars , Water/chemistry
8.
Int J Mol Sci ; 23(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35163609

ABSTRACT

1H spin-lattice relaxation experiments have been performed for a series of ionic liquids including bis(trifluoromethanesulfonyl)imide anion and cations of a varying alkyl chain length: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, triethyltetradecylammonium, and hexadecyltriethylammonium. The relaxation studies were carried out in abroad frequency range covering three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. On the basis of a thorough, quantitative analysis of this reach data set, parameters characterizing the relative, cation-cation, translation diffusion (relative diffusion coefficients and translational correlation times), and rotational motion of the cation (rotational correlation times) were determined. Relationships between these quantities and their dependence on the alkyl chain length were discussed in comparison to analogous properties of molecular liquids. It was shown, among other findings, that the ratio between the translational and rotational correlation times is smaller than for molecular liquids and considerably dependent on temperature. Moreover, a comparison of relative and self-diffusion coefficients indicate correlated translational dynamics of the cations.


Subject(s)
Ionic Liquids/chemistry , Quaternary Ammonium Compounds/chemistry , Diffusion , Magnetic Resonance Spectroscopy , Relaxation , Temperature
9.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164275

ABSTRACT

Measurement of the nitric oxide (NO) concentration in living cells in the physiological nanomolar range is crucial in understanding NO biochemical functions, as well as in characterizing the efficiency and kinetics of NO delivery by NO-releasing drugs. Here, we show that fluorescence correlation spectroscopy (FCS) is perfectly suited for these purposes, due to its sensitivity, selectivity, and spatial resolution. Using the fluorescent indicators, diaminofluoresceins (DAFs), and FCS, we measured the NO concentrations in NO-producing living human primary endothelial cells, as well as NO delivery kinetics, by an external NO donor to the immortal human epithelial living cells. Due to the high spatial resolution of FCS, the NO concentration in different parts of the cells were also measured. The detection of nitric oxide by means of diaminofluoresceins is much more efficient and faster in living cells than in PBS solutions, even though the conversion to the fluorescent form is a multi-step reaction.


Subject(s)
Nitric Oxide/analysis , Spectrometry, Fluorescence/methods , Cell Survival , Fluorescent Dyes/analysis , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Optical Imaging
10.
Eur J Neurosci ; 54(11): 7899-7917, 2021 12.
Article in English | MEDLINE | ID: mdl-34779069

ABSTRACT

Semantic binding refers to constructing complex meaning based on elementary building blocks. Using electroencephalography (EEG), we investigated the age-related changes in modulations of oscillatory brain activity supporting lexical retrieval and semantic binding. Young and older adult participants were visually presented two-word phrases, which for the first word revealed a lexical retrieval signature (e.g., swift vs. swrfeq) and for the second word revealed a semantic binding signature (e.g., horse in a semantic binding "swift horse" vs. no binding "swrfeq horse" context). The oscillatory brain activity associated with lexical retrieval as well as semantic binding significantly differed between healthy older and young adults. Specifically for lexical retrieval, we found that different age groups exhibited opposite patterns of theta and alpha modulation, which as a combined picture suggest that lexical retrieval is associated with different and delayed signatures in older compared with young adults. For semantic binding, in young adults, we found a signature in the low-beta range centred around the target word onset (i.e., a smaller low-beta increase for binding relative to no binding), whereas in healthy older adults, we found an opposite binding signature about ~500 ms later in the low- and high-beta range (i.e., a smaller low- and high-beta decrease for binding relative to no binding). The novel finding of a different and delayed oscillatory signature for semantic binding in healthy older adults reflects that the integration of word meaning into the semantic context takes longer and relies on different mechanisms in healthy older compared with young adults.


Subject(s)
Healthy Aging , Semantics , Animals , Brain , Comprehension , Electroencephalography , Horses
11.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502026

ABSTRACT

1H and 19F spin-lattice relaxation experiments have been performed for butyltriethylammonium bis(trifluoromethanesulfonyl)imide in the temperature range from 258 to 298 K and the frequency range from 10 kHz to 10 MHz. The results have thoroughly been analysed in terms of a relaxation model taking into account relaxation pathways associated with 1H-1H, 19F-19F and 1H-19F dipole-dipole interactions, rendering relative translational diffusion coefficients for the pairs of ions: cation-cation, anion-anion and cation-anion, as well as the rotational correlation time of the cation. The relevance of the 1H-19F relaxation contribution to the 1H and 19F relaxation has been demonstrated. A comparison of the diffusion coefficients has revealed correlation effects in the relative cation-anion translational movement. It has also turned out that the translational movement of the anions is faster than of cations, especially at high temperatures. Moreover, the relative cation-cation diffusion coefficients have been compared with self-diffusion coefficients obtained by means of NMR (Nuclear Magnetic Resonance) gradient diffusometry. The comparison indicates correlation effects in the relative cation-cation translational dynamics-the effects become more pronounced with decreasing temperature.


Subject(s)
Hydrocarbons, Fluorinated/chemistry , Imides/chemistry , Ionic Liquids/chemistry , Magnetic Resonance Spectroscopy/methods
12.
Sci Rep ; 11(1): 18465, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531459

ABSTRACT

Production of ethanol from lignocellulosic biomass is considered the most promising proposition for developing a sustainable and carbon-neutral energy system. The use of renewable raw materials and variability of lignocellulosic feedstock generating hexose and pentose sugars also brings advantages of the most abundant, sustainable and non-food competitive biomass. Great attention is now paid to agricultural wastes and overgrowing plants as an alternative to fast-growing energetic crops. The presented study explores the use of stinging nettle stems, which have not been treated as a source of bioethanol. Apart from being considered a weed, stinging nettle is used in pharmacy or cosmetics, yet its stems are always a non-edible waste. Therefore, the aim was to evaluate the effectiveness of pretreatment using imidazolium- and ammonium-based ionic liquids, enzymatic hydrolysis, fermentation of stinging nettle stems, and comparison of such a process with giant miscanthus. Raw and ionic liquid-pretreated feedstocks of stinging nettle and miscanthus were subjected to compositional analysis and scanning electron microscopy to determine the pretreatment effect. Next, the same conditions of enzymatic hydrolysis and fermentation were applied to both crops to explore the stinging nettle stems potential in the area of bioethanol production. The study showed that the pretreatment of both stinging nettle and miscanthus with imidazolium acetates allowed for increased availability of the critical lignocellulosic fraction. The use of 1-butyl-3-methylimidazolium acetate in the pretreatment of stinging nettle allowed to obtain very high ethanol concentrations of 7.3 g L-1, with 7.0 g L-1 achieved for miscanthus. Results similar for both plants were obtained for 1-ethyl-3-buthylimidazolium acetate. Moreover, in the case of ammonium ionic liquids, even though they have comparable potential to dissolve cellulose, it was impossible to depolymerize lignocellulose and extract lignin. Furthermore, they did not improve the efficiency of the hydrolysis process, which in turn led to low alcohol concentration. Overall, from the presented results, it can be assumed that the stinging nettle stems are a very promising bioenergy crop.

13.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073046

ABSTRACT

The application of ionic liquids (ILs) has grown enormously, from their use as simple solvents, catalysts, media in separation science, or electrolytes to that as task-specific, tunable molecular machines with appropriate properties. A thorough understanding of these properties and structure-property relationships is needed to fully exploit their potential, open new directions in IL-based research and, finally, properly implement the appropriate applications. In this work, we investigated the structure-properties relationships of a series of alkyltriethylammonium bis(trifluoromethanesulfonyl)imide [TEA-R][TFSI] ionic liquids in relation to their thermal behavior, structure organization, and self-diffusion coefficients in the bulk state using DSC, FT-IR, SAXS, and NMR diffusometry techniques. The phase transition temperatures were determined, indicating alkyl chain dependency. Fourier-transformed infrared spectroscopy studies revealed the structuration of the ionic liquids along with alkyl chain elongation. SAXS experiments clearly demonstrated the existence of polar/non-polar domains. The alkyl chain length influenced the expansion of the non-polar domains, leading to the expansion between cation heads in polar regions of the structured IL. 1H NMR self-diffusion coefficients indicated that alkyl chain elongation generally caused the lowering of the self-diffusion coefficients. Moreover, we show that the diffusion of anions and cations of ILs is similar, even though they vary in their size.


Subject(s)
Imides/chemistry , Ionic Liquids/chemistry , Quaternary Ammonium Compounds/chemistry , Diffusion , Models, Chemical , Molecular Structure , Phase Transition , Transition Temperature
14.
Materials (Basel) ; 15(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35009361

ABSTRACT

1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for 1H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions. The dynamics have been successfully modeled in terms of the Arrhenius law. The timescales of the dynamical processes and their temperature evolution have been discussed in detail, depending on the structure of the cation.

15.
Mater Sci Eng C Mater Biol Appl ; 118: 111507, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255065

ABSTRACT

In this work, we show synthesis that leads to thermoreponsive poly-N-isopropyl acrylamide (pNIPAM) nanogels with sizes below 100 nm, irrespectively of the surfactant to crosslinker ratio. We also show that in many environments the temperature induced pNIPAM collapse at Lower Critical Solution Temperature (LCST) of 32.5 °C is accompanied by gel nanoparticles' aggregation. Thus, the proper information on the nanoparticle (NP) structure and deswelling can be obtained only if the routinely measured hydrodynamic radius is supplemented by information on the molecular weight, which can be obtained from the intensity of scattered light. We measured the dynamics and reversibility of the deswelling and subsequent aggregation processes. Furthermore, we show that the highly concentrated pNIPAM gel NPs reversibly form bulk hydrogel networks of varied interconnected porous structure. We show, that in case of drying pNIPAM gel NPs above the LCST, it is possible to obtain films with 20-fold increase in storage modulus (G') compared to hydrogel networks measured at room temperature. They exhibit temperature hysteresis behavior around LCST of 32.5 °C similar to pNIPAM films. Finally, we show that these hydrogel films, lead to extended proliferation of cells across three different types: fibroblast, endothelial and cancer cells. Additionally, none of the films exhibited any cytotoxic effects. Our study brings new insights into physicochemical characterization of pNIPAM gel NPs and networks behavior in realistic conditions of in vitro measurements, especially by means of dynamic light scattering as well as final unique properties of both gel NPs and formed porous films for possible tissue engineering applications.


Subject(s)
Acrylic Resins , Nanoparticles , Hydrogels , Nanoparticles/toxicity , Temperature
16.
Nanomaterials (Basel) ; 8(3)2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29547559

ABSTRACT

Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-ß-cyclodextrin (SH-ßCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...