Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Trends Cell Biol ; 32(6): 527-536, 2022 06.
Article in English | MEDLINE | ID: mdl-35063336

ABSTRACT

Telomeres are distinctive structures that protect the ends of linear chromosomes and ensure genome stability. They are composed of long tracks of repetitive and G-rich DNA that is bound by shelterin, a dedicated six-subunit protein complex. In somatic cells, shelterin protects telomeres from the DNA damage response and regulates telomere length. Telomere repeats are replenished by telomerase, a specialized ribonucleoprotein composed of telomerase reverse transcriptase and an integral RNA component. Telomere protection and telomerase regulation have been primarily studied in somatic cells. However, recent evidence points out striking differences in the context of embryonic stem cells (ESCs). In this review, we discuss insights into telomere protection in ESCs versus somatic cells and summarize findings on telomerase regulation as a function of pluripotency.


Subject(s)
Telomerase , Embryonic Stem Cells , Genomic Instability , Humans , Shelterin Complex , Telomerase/chemistry , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism
2.
Nat Commun ; 12(1): 4856, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381034

ABSTRACT

Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming.


Subject(s)
CCCTC-Binding Factor/metabolism , Cellular Reprogramming , Totipotent Stem Cells/cytology , Animals , Binding Sites , CCCTC-Binding Factor/genetics , Cell Death , DNA Damage , Embryo, Mammalian , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Totipotent Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Nature ; 589(7840): 110-115, 2021 01.
Article in English | MEDLINE | ID: mdl-33239785

ABSTRACT

In mammals, telomere protection is mediated by the essential protein TRF2, which binds chromosome ends and ensures genome integrity1,2. TRF2 depletion results in end-to-end chromosome fusions in all cell types that have been tested so far. Here we find that TRF2 is dispensable for the proliferation and survival of mouse embryonic stem (ES) cells. Trf2-/- (also known as Terf2) ES cells do not exhibit telomere fusions and can be expanded indefinitely. In response to the deletion of TRF2, ES cells exhibit a muted DNA damage response that is characterized by the recruitment of γH2AX-but not 53BP1-to telomeres. To define the mechanisms that control this unique DNA damage response in ES cells, we performed a CRISPR-Cas9-knockout screen. We found a strong dependency of TRF2-null ES cells on the telomere-associated protein POT1B and on the chromatin remodelling factor BRD2. Co-depletion of POT1B or BRD2 with TRF2 restores a canonical DNA damage response at telomeres, resulting in frequent telomere fusions. We found that TRF2 depletion in ES cells activates a totipotent-like two-cell-stage transcriptional program that includes high levels of ZSCAN4. We show that the upregulation of ZSCAN4 contributes to telomere protection in the absence of TRF2. Together, our results uncover a unique response to telomere deprotection during early development.


Subject(s)
Pluripotent Stem Cells/metabolism , Telomere/metabolism , Telomeric Repeat Binding Protein 2/deficiency , Telomeric Repeat Binding Protein 2/metabolism , Animals , Cell Proliferation , Cell Survival , DNA Damage , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Telomeric Repeat Binding Protein 2/genetics , Totipotent Stem Cells/cytology , Totipotent Stem Cells/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
Genetics ; 209(1): 129-141, 2018 05.
Article in English | MEDLINE | ID: mdl-29559500

ABSTRACT

Dna2 is a nuclease and helicase that functions redundantly with other proteins in Okazaki fragment processing, double-strand break resection, and checkpoint kinase activation. Dna2 is an essential enzyme, required for yeast and mammalian cell viability. Here, we report that numerous mutations affecting the DNA damage checkpoint suppress dna2∆ lethality in Saccharomyces cerevisiaedna2∆ cells are also suppressed by deletion of helicases PIF1 and MPH1, and by deletion of POL32, a subunit of DNA polymerase δ. All dna2∆ cells are temperature sensitive, have telomere length defects, and low levels of telomeric 3' single-stranded DNA (ssDNA). Interestingly, Rfa1, a subunit of the major ssDNA binding protein RPA, and the telomere-specific ssDNA binding protein Cdc13, often colocalize in dna2∆ cells. This suggests that telomeric defects often occur in dna2∆ cells. There are several plausible explanations for why the most critical function of Dna2 is at telomeres. Telomeres modulate the DNA damage response at chromosome ends, inhibiting resection, ligation, and cell-cycle arrest. We suggest that Dna2 nuclease activity contributes to modulating the DNA damage response at telomeres by removing telomeric C-rich ssDNA and thus preventing checkpoint activation.


Subject(s)
DNA Helicases/metabolism , Telomere/genetics , Telomere/metabolism , DNA Helicases/genetics , DNA, Single-Stranded , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Lethal , Mutation , Sensitivity and Specificity , Sequence Deletion , Temperature , Yeasts/genetics , Yeasts/metabolism
5.
Cell Cycle ; 15(20): 2732-41, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27628486

ABSTRACT

All organisms live in changeable, stressful environments. It has been reported that exposure to low-dose stresses or poisons can improve fitness. However, examining the effects of chronic low-dose chemical exposure is challenging. To address this issue we used temperature sensitive mutations affecting the yeast cell division cycle to induce low-dose stress for 40 generation times, or more. We examined cdc13-1 mutants, defective in telomere function, and cdc15-2 mutants, defective in mitotic kinase activity. We found that each stress induced similar adaptive responses. Stress-exposed cells became resistant to higher levels of stress but less fit, in comparison with unstressed cells, in conditions of low stress. The costs and benefits of adaptation to chronic stress were reversible. In the cdc13-1 context we tested the effects of Rad9, a central player in the response to telomere defects, Exo1, a nuclease that degrades defective telomeres, and Msn2 and Msn4, 2 transcription factors that contribute to the environmental stress response. We also observed, as expected, that Rad9 and Exo1 modulated the response of cells to stress. In addition we observed that adaptation to stress could still occur in these contexts, with associated costs and benefits. We conclude that functionally redundant cellular networks control the adaptive responses to low dose chronic stress. Our data suggests that if organisms adapt to low dose stress it is helpful if stress continues or increases but harmful should stress levels reduce.


Subject(s)
Saccharomyces cerevisiae/physiology , Stress, Physiological , Adaptation, Physiological/drug effects , Cell Line, Tumor , Hormesis/drug effects , Humans , Mitosis/drug effects , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Stress, Physiological/drug effects , Telomere/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL