Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Biomolecules ; 13(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37759709

ABSTRACT

While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in vitro, with potential as an immunotherapy if its low systemic bioavailability can be addressed. We repurposed alendronate in a non-leaky and long-circulating liposomal carrier similar to that of the clinically approved pegylated liposomal doxorubicin to facilitate rapid clinical translation. Here, we tested liposomal alendronate (PLA) as an immunotherapeutic agent for cancer in comparison with a standard of care immunotherapy, a PD-1 immune checkpoint inhibitor. We showed that the PLA induced bone marrow-derived murine non-activated macrophages and M2-macrophages to polarize towards an M1-functionality, as evidenced by gene expression, cytokine secretion, and lipidomic profiles. Free alendronate had negligible effects, indicating that liposome encapsulation is necessary for the modulation of macrophage activity. In vivo, the PLA showed significant accumulation in tumor and tumor-draining lymph nodes, sites of tumor immunosuppression that are targets of immunotherapy. The PLA remodeled the tumor microenvironment towards a less immunosuppressive milieu, as indicated by a decrease in TAM and helper T cells, and inhibited the growth of established tumors in the B16-OVA melanoma model. The improved bioavailability and the beneficial effects of PLA on macrophages suggest its potential application as immunotherapy that could synergize with T-cell-targeted therapies and chemotherapies to induce immunogenic cell death. PLA warrants further clinical development, and these clinical trials should incorporate tumor and blood biomarkers or immunophenotyping studies to verify the anti-immunosuppressive effect of PLA in humans.

2.
Sci Adv ; 9(19): eadf8549, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37163604

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease that predominantly affects women. LAM cells carry TSC1/TSC2 mutations, causing mTORC1 hyperactivation and uncontrolled cell growth. mTORC1 inhibitors stabilize lung function; however, sustained efficacy requires long-term administration, and some patients fail to tolerate or respond to therapy. Although the genetic basis of LAM is known, mechanisms underlying LAM pathogenesis remain elusive. We integrated single-cell RNA sequencing and single-nuclei ATAC-seq of LAM lungs to construct a gene regulatory network controlling the transcriptional program of LAM cells. We identified activation of uterine-specific HOX-PBX transcriptional programs in pulmonary LAMCORE cells as regulators of cell survival depending upon HOXD11-PBX1 dimerization. Accordingly, blockage of HOXD11-PBX1 dimerization by HXR9 suppressed LAM cell survival in vitro and in vivo. PBX1 regulated STAT1/3, increased the expression of antiapoptotic genes, and promoted LAM cell survival in vitro. The HOX-PBX gene network provides promising targets for treatment of LAM/TSC mTORC1-hyperactive cancers.


Subject(s)
Gene Regulatory Networks , Homeodomain Proteins , Lymphangioleiomyomatosis , Humans , Single-Cell Analysis , Lymphangioleiomyomatosis/metabolism , Lymphangioleiomyomatosis/pathology , Transcription Factors/metabolism , Lung/metabolism , Lung/pathology , Animals , Rats , Neoplasm Metastasis , Multiomics , Female
3.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36927688

ABSTRACT

Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell-derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1-hyperactive neoplasms, including TSC and LAM.


Subject(s)
Lung Neoplasms , Tuberous Sclerosis , Humans , Mice , Female , Animals , Tuberous Sclerosis/drug therapy , Tumor Suppressor Proteins/genetics , Up-Regulation , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Acid Ceramidase/therapeutic use , Lung Neoplasms/pathology , Sirolimus/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout
4.
Front Immunol ; 13: 1038807, 2022.
Article in English | MEDLINE | ID: mdl-36439126

ABSTRACT

Targeting tumor-associated angiogenesis is currently at the forefront of renal cell carcinoma (RCC) therapy, with sunitinib and bevacizumab leading to increased survival in patients with metastatic RCC (mRCC). However, resistance often occurs shortly after initiation of therapy, suggesting that targeting the tumor-associated vascular endothelium may not be sufficient to eradicate RCC. This study reports the therapeutic efficacy of a Listeria (Lm)-based vaccine encoding an antigenic fragment of CD105 (Lm-LLO-CD105A) that targets both RCC tumor cells and the tumor-associated vasculature. Lm-LLO-CD105A treatment reduced primary tumor growth in both subcutaneous and orthotopic models of murine RCC. The vaccine conferred anti-tumor immunity and remodeled the tumor microenvironment (TME), resulting in increased infiltration of polyfunctional CD8+ and CD4+ T cells and reduced infiltration of immunosuppressive cell types within the TME. We further provide evidence that the therapeutic efficacy of Lm-LLO-CD105A is mediated by CD8+ T cells and is dependent on the robust antigenic expression of CD105 by RCC tumor cells. The result from this study demonstrates the safety and promising therapeutic efficacy of targeting RCC-associated CD105 expression with Lm-based immunotherapy.


Subject(s)
Cancer Vaccines , Carcinoma, Renal Cell , Kidney Neoplasms , Listeria , Humans , Mice , Animals , Carcinoma, Renal Cell/drug therapy , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Immunotherapy/methods , Neovascularization, Pathologic/drug therapy , Kidney Neoplasms/pathology , Tumor Microenvironment
5.
Front Immunol ; 13: 931273, 2022.
Article in English | MEDLINE | ID: mdl-35860237

ABSTRACT

The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.


Subject(s)
Complement System Proteins , Neoplasms , Complement Activation , Humans , T-Lymphocytes , Tumor Microenvironment
6.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068008

ABSTRACT

A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-ß and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-ß, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-ß and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.


Subject(s)
Anti-Infective Agents/pharmacology , Antigen Presentation/immunology , Atovaquone/pharmacology , Immunosuppression Therapy , Myeloid-Derived Suppressor Cells/immunology , T-Lymphocytes, Regulatory/immunology , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis , Cell Proliferation , Cytokines/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Myeloid-Derived Suppressor Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Antibodies (Basel) ; 9(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271774

ABSTRACT

The link of the complement system to angiogenesis has remained circumstantial and speculative for several years. Perhaps the most clinically relevant example of possible involvement of complement in pathological neovascularization is age-related macular degeneration. Recent studies, however, provide more direct and experimental evidence that indeed the complement system regulates physiological and pathological angiogenesis in models of wound healing, retinal regeneration, age-related macular degeneration, and cancer. Interestingly, complement-dependent mechanisms involved in angiogenesis are very much context dependent, including anti- and proangiogenic functions. Here, we discuss these new developments that place complement among other important regulators of homeostatic and pathological angiogenesis, and we provide the perspective on how these newly discovered complement functions can be targeted for therapy.

8.
J Immunol ; 205(11): 3218-3229, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33158953

ABSTRACT

Preclinical studies demonstrated that complement promotes tumor growth. Therefore, we sought to determine the best target for complement-based therapy among common human malignancies. High expression of 11 complement genes was linked to unfavorable prognosis in renal cell carcinoma. Complement protein expression or deposition was observed mainly in stroma, leukocytes, and tumor vasculature, corresponding to a role of complement in regulating the tumor microenvironment. Complement abundance in tumors correlated with a high nuclear grade. Complement genes clustered within an aggressive inflammatory subtype of renal cancer characterized by poor prognosis, markers of T cell dysfunction, and alternatively activated macrophages. Plasma levels of complement proteins correlated with response to immune checkpoint inhibitors. Corroborating human data, complement deficiencies and blockade reduced tumor growth by enhancing antitumor immunity and seemingly reducing angiogenesis in a mouse model of kidney cancer resistant to PD-1 blockade. Overall, this study implicates complement in the immune landscape of renal cell carcinoma, and notwithstanding cohort size and preclinical model limitations, the data suggest that tumors resistant to immune checkpoint inhibitors might be suitable targets for complement-based therapy.


Subject(s)
Biomarkers/blood , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/immunology , Complement System Proteins/immunology , Kidney Neoplasms/blood , Kidney Neoplasms/immunology , Animals , Carcinoma, Renal Cell/drug therapy , Cell Proliferation/drug effects , Cohort Studies , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Inflammation/immunology , Kidney Neoplasms/drug therapy , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Middle Aged , Neovascularization, Pathologic/immunology , Prognosis , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
10.
J Immunol ; 204(4): 990-1000, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900334

ABSTRACT

In the metastasis-targeted organs, angiogenesis is essential for the progression of dormant micrometastases to rapidly growing and clinically overt lesions. However, we observed changes suggesting angiogenic switching in the mouse lungs prior to arrival of tumor cells (i.e., in the premetastatic niche) in the models of breast carcinoma. This angiogenic switching appears to be caused by myeloid-derived suppressor cells recruited to the premetastatic lungs through complement C5a receptor 1 signaling. These myeloid cells are known to secrete several proangiogenic factors in tumors, including IL-1ß and matrix metalloproteinase-9, and we found upregulation of these genes in the premetastatic lungs. Blockade of C5a receptor 1 synergized with antiangiogenic Listeria monocytogenes-based vaccines to decrease the lung metastatic burden by reducing vascular density and improving antitumor immunity in the lungs. This was mediated even when growth of primary breast tumors was not affected by these treatments. This work provides initial evidence that angiogenesis contributes to the premetastatic niche in rapidly progressing cancers and that inhibiting this process through immunotherapy is beneficial for reducing or even preventing metastasis.


Subject(s)
Cancer Vaccines/administration & dosage , Lung Neoplasms/therapy , Mammary Neoplasms, Experimental/therapy , Myeloid-Derived Suppressor Cells/immunology , Neovascularization, Pathologic/therapy , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Combined Modality Therapy/methods , Complement C5a/immunology , Complement C5a/metabolism , Female , Humans , Immunotherapy/methods , Listeria monocytogenes/immunology , Lung/blood supply , Lung/immunology , Lung/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Myeloid-Derived Suppressor Cells/metabolism , Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Neovascularization, Pathologic/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Tumor Microenvironment/immunology
11.
Front Immunol ; 11: 603039, 2020.
Article in English | MEDLINE | ID: mdl-33488603

ABSTRACT

Nanoparticle-based anticancer medications were first approved for cancer treatment almost 2 decades ago. Patients benefit from these approaches because of the targeted-drug delivery and reduced toxicity, however, like other therapies, adverse reactions often limit their use. These reactions are linked to the interactions of nanoparticles with the immune system, including the activation of complement. This activation can cause well-characterized acute inflammatory reactions mediated by complement effectors. However, the long-term implications of chronic complement activation on the efficacy of drugs carried by nanoparticles remain obscured. The recent discovery of protumor roles of complement raises the possibility that nanoparticle-induced complement activation may actually reduce antitumor efficacy of drugs carried by nanoparticles. We discuss here the initial evidence supporting this notion. Better understanding of the complex interactions between nanoparticles, complement, and the tumor microenvironment appears to be critical for development of nanoparticle-based anticancer therapies that are safer and more efficacious.


Subject(s)
Antineoplastic Agents/adverse effects , Complement Activation/drug effects , Drug Carriers/adverse effects , Nanomedicine , Nanoparticles/adverse effects , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Drug Compounding , Humans , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment
12.
Mol Cancer Res ; 17(8): 1639-1651, 2019 08.
Article in English | MEDLINE | ID: mdl-31088907

ABSTRACT

We discovered that 90.3% of patients with angiomyolipomas, lymphangioleiomyomatosis (LAM), and tuberous sclerosis complex (TSC) carry the arginine variant of codon 72 (R72) of TP53 and that R72 increases the risk for angiomyolipoma. R72 transactivates NOTCH1 and NODAL better than the proline variant of codon 72 (P72); therefore, the expression of NOTCH1 and NODAL is increased in angiomyolipoma cells that carry R72. The loss of Tp53 and Tsc1 within nestin-expressing cells in mice resulted in the development of renal cell carcinomas (RCC) with high Notch1 and Nodal expression, suggesting that similar downstream mechanisms contribute to tumorigenesis as a result of p53 loss in mice and p53 polymorphism in humans. The loss of murine Tp53 or expression of human R72 contributes to tumorigenesis via enhancing epithelial-to-mesenchymal transition and motility of tumor cells through the Notch and Nodal pathways. IMPLICATIONS: This work revealed unexpected contributions of the p53 polymorphism to the pathogenesis of TSC and established signaling alterations caused by this polymorphism as a target for therapy. We found that the codon 72 TP53 polymorphism contributes to TSC-associated tumorigenesis via Notch and Nodal signaling.


Subject(s)
Carcinogenesis/pathology , Nodal Protein/metabolism , Polymorphism, Single Nucleotide , Receptor, Notch1/metabolism , Tuberous Sclerosis/pathology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/physiology , Angiomyolipoma/genetics , Angiomyolipoma/metabolism , Angiomyolipoma/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Mutation , Nodal Protein/genetics , Receptor, Notch1/genetics , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
13.
Front Immunol ; 9: 1629, 2018.
Article in English | MEDLINE | ID: mdl-30061895

ABSTRACT

Complement is an effector of innate immunity and a bridge connecting innate immunity and subsequent adaptive immune responses. It is essential for protection against infections and for orchestrating inflammatory responses. Recent studies have also demonstrated contribution of the complement system to several homeostatic processes that are traditionally not considered to be involved in immunity. Thus, complement regulates homeostasis and immunity. However, dysregulation of this system contributes to several pathologies including inflammatory and autoimmune diseases. Unexpectedly, studies of the last decade have also revealed that complement promotes cancer progression. Since the initial discovery of tumor promoting role of complement, numerous preclinical and clinical studies demonstrated contribution of several complement components to regulation of tumor growth through their direct interactions with the corresponding receptors on tumor cells or through suppression of antitumor immunity. Most of this work, however, focused on a role of complement in regulating growth of primary tumors. Only recently, a few studies showed that complement promotes cancer metastasis through its contribution to epithelial-to-mesenchymal transition and the premetastatic niche. This latter work has shown that complement activation and generation of complement effectors including C5a occur in organs that are target for metastasis prior to arrival of the very first tumor cells. C5a through its interactions with C5a receptor 1 inhibits antitumor immunity by activating and recruiting immunosuppressive cells from the bone marrow to the premetastatic niche and by regulating function and self-renewal of pulmonary tissue-resident alveolar macrophages. These new advancements provide additional evidence for multifaceted functions of complement in cancer.

14.
Semin Immunol ; 37: 85-97, 2018 06.
Article in English | MEDLINE | ID: mdl-29454575

ABSTRACT

Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients.


Subject(s)
Complement System Proteins/metabolism , Immunotherapy/methods , Neoplasms/therapy , Animals , Complement Activation , Cytotoxicity, Immunologic , Humans , Immunity, Innate , Immunomodulation , Neoplasms/immunology , Tumor Microenvironment
15.
Nat Commun ; 8(1): 1848, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29184052

ABSTRACT

Differentiation abnormalities are a hallmark of tuberous sclerosis complex (TSC) manifestations; however, the genesis of these abnormalities remains unclear. Here we report on mechanisms controlling the multi-lineage, early neuronal progenitor and neural stem-like cell characteristics of lymphangioleiomyomatosis (LAM) and angiomyolipoma cells. These mechanisms include the activation of a previously unreported Rheb-Notch-Rheb regulatory loop, in which the cyclic binding of Notch1 to the Notch-responsive elements (NREs) on the Rheb promoter is a key event. This binding induces the transactivation of Rheb. The identified NRE2 and NRE3 on the Rheb promoter are important to Notch-dependent promoter activity. Notch cooperates with Rheb to block cell differentiation via similar mechanisms in mouse models of TSC. Cell-specific loss of Tsc1 within nestin-expressing cells in adult mice leads to the formation of kidney cysts, renal intraepithelial neoplasia, and invasive papillary renal carcinoma.


Subject(s)
Angiomyolipoma/pathology , Lung Neoplasms/pathology , Lymphangioleiomyomatosis/pathology , Ras Homolog Enriched in Brain Protein/metabolism , Receptor, Notch1/metabolism , Angiomyolipoma/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Female , Humans , Lung Neoplasms/metabolism , Lymphangioleiomyomatosis/metabolism , Male , Mice, SCID , Mice, Transgenic , Neural Crest/metabolism , Neural Crest/pathology , Promoter Regions, Genetic , Ras Homolog Enriched in Brain Protein/genetics , Receptor, Notch1/genetics , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays
16.
J Immunol ; 198(7): 2989-2999, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28228558

ABSTRACT

Relatively little is known about factors that initiate immunosuppression in tumors and act at the interface between tumor cells and host cells. In this article, we report novel immunosuppressive properties of the ribosomal protein S19 (RPS19), which is upregulated in human breast and ovarian cancer cells and released from apoptotic tumor cells, whereupon it interacts with the complement C5a receptor 1 expressed on tumor infiltrating myeloid-derived suppressor cells. This interaction promotes tumor growth by facilitating recruitment of these cells to tumors. RPS19 also induces the production of immunosuppressive cytokines, including TGF-ß, by myeloid-derived suppressor cells in tumor-draining lymph nodes, leading to T cell responses skewed toward Th2 phenotypes. RPS19 promotes generation of regulatory T cells while reducing infiltration of CD8+ T cells into tumors. Reducing RPS19 in tumor cells or blocking the C5a receptor 1-RPS19 interaction decreases RPS19-mediated immunosuppression, impairs tumor growth, and delays the development of tumors in a transgenic model of breast cancer. This work provides initial preclinical evidence for targeting RPS19 for anticancer therapy enhancing antitumor T cell responses.


Subject(s)
Myeloid-Derived Suppressor Cells/immunology , Neoplasms, Experimental/immunology , Receptor, Anaphylatoxin C5a/immunology , Ribosomal Proteins/immunology , Animals , Blotting, Western , Cell Line, Tumor , Flow Cytometry , Humans , Immunoprecipitation , Mice , T-Lymphocytes/immunology
17.
J Vis Exp ; (112)2016 06 26.
Article in English | MEDLINE | ID: mdl-27403530

ABSTRACT

This paper describes the application of the syngeneic model of breast cancer (4T1) to the studies on a role of pulmonary alveolar macrophages in cancer metastasis. The 4T1 cells expressing GFP in combination with imaging and confocal microscopy are used to monitor tumor growth, track metastasizing tumor cells, and quantify the metastatic burden. These approaches are supplemented by digital histopathology that allows the automated and unbiased quantification of metastases. In this method the routinely prepared histological lung sections, which are stained with hematoxylin and eosin, are scanned and converted to the digital slides that are then analyzed by the self-trained pattern recognition software. In addition, we describe the flow cytometry approaches with the use of multiple cell surface markers to identify alveolar macrophages in the lungs. To determine impact of alveolar macrophages on metastases and antitumor immunity these cells are depleted with the clodronate-containing liposomes administrated intranasally to tumor-bearing mice. This approach leads to the specific and efficient depletion of this cell population as confirmed by flow cytometry. Tumor volumes and lung metastases are evaluated in mice depleted of alveolar macrophages, to determine the role of these cells in the metastatic progression of breast cancer.


Subject(s)
Breast Neoplasms , Macrophages, Alveolar , Animals , Liposomes , Lung , Lung Neoplasms , Mice
18.
Am J Chin Med ; 44(2): 321-53, 2016.
Article in English | MEDLINE | ID: mdl-27080944

ABSTRACT

Herbal products containing Korean Angelica gigas Nakai (AGN) root extract are marketed as dietary supplements for memory enhancement, pain killing, and female menopausal symptom relief. We have shown the anticancer activities of AGN supplements in mouse models. To facilitate human anticancer translational research, we characterized the tissue distribution of AGN marker pyranocoumarin compounds decursin (D) and decursinol angelate (DA) ([Formula: see text]% in AGN) and their metabolite decursinol (DOH), assessed the safety of sub-chronic AGN dietary exposure in mice, and explored its impact on plasma aqueous metabolites and the prostate transcriptome. The data show that after a gavage dose, plasma contained readily detectable DOH, but little D and DA, mirroring patterns in the liver. Extra-hepatic tissues retained greater levels of DA and D than the liver did. For sub-chronic exposures, male mice were provided ad libitum AIN93M-pellet diets with 0.5 and 1% AGN for six weeks. No adverse effects were observed on the plasma biochemistry markers of liver and kidney integrity in spite of their enlargement. Histopathological examinations of the liver, kidney and other visceral organs did not reveal tissue abnormalities. Metabolomic assessment of plasma from mice fed the 1%-AGN diet suggested metabolic shifts of key amino acids especially in the methionine-cysteine cycle, purine cycle, and glycolysis-citrate cycle. Prostate transcriptomic profiling identified gene signature changes in the metabolisms of drugs, lipids and cellular energetics, neuro-muscular features, immunity and inflammation, and tumor suppressor/oncogene balance. The safety profile was corroborated with a daily [Formula: see text] injection of AGN extract (100-300[Formula: see text]mg/kg) for four weeks, which resulted in much greater systemic pyranocoumarin exposure than the dietary route did.


Subject(s)
Angelica/chemistry , Antineoplastic Agents, Phytogenic , Dietary Supplements , Metabolome , Plant Extracts/pharmacology , Prostate/metabolism , Pyranocoumarins/metabolism , Transcriptome , Animals , Benzopyrans/metabolism , Butyrates/metabolism , Female , Injections, Intraperitoneal , Male , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Roots/chemistry , Tissue Distribution
19.
J Immunol ; 194(11): 5529-38, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25911761

ABSTRACT

In contrast to tumor-associated macrophages, myeloid-derived suppressor cells, or inflammatory monocytes, functions of tissue resident macrophages, including alveolar macrophages (AM), in cancer were not well studied. Using a mouse model of breast cancer, we show that AM promote cancer metastasis to the lungs by suppressing antitumor T cells in this organ. AM accumulated in the premetastatic lungs through complement C5a receptor-mediated proliferation but not through recruitment from the circulation. AM preconditioned by breast tumors inhibited Th1 and favored generation of Th2 cells that had lower tumoricidal activity than Th1 cells. In addition, AM reduced the number and maturation of lung dendritic cells by regulating TGF-ß in the lung environment. Depletion of AM reversed immunosuppression imposed by these cells and strengthened local Th1 responses, which significantly reduced lung metastatic burden. C5a receptor deficiency, which also lessens myeloid-derived suppressor cells in the premetastatic niche, synergized with the depletion of AM in preventing metastasis, leading to protection of mice from lung metastases. This study identifies AM as a new component of the premetastatic niche, which is harnessed by tumors to impose immunosuppression, and as a new target for cancer immunotherapies to eliminate or reduce metastasis. Because the lungs are the most common target for hematogenous metastasis, this research offers a plausible explanation for susceptibility of the lungs to cancer metastasis.


Subject(s)
Lung Neoplasms/immunology , Lung Neoplasms/secondary , Macrophages, Alveolar/immunology , Mammary Neoplasms, Experimental/pathology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Cell Line , Cell Proliferation , Dendritic Cells/immunology , Female , Humans , Lung/immunology , Macrophages, Alveolar/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor, Anaphylatoxin C5a/immunology , Transforming Growth Factor beta/biosynthesis , Tumor Microenvironment/immunology
20.
J Immunol ; 194(3): 1285-91, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25548229

ABSTRACT

Wound healing is a complex homeostatic response to injury that engages numerous cellular activities, processes, and cell-to-cell interactions. The complement system, an intricate network of proteins with important roles in immune surveillance and homeostasis, has been implicated in many physiological processes; however, its role in wound healing remains largely unexplored. In this study, we employ a murine model of excisional cutaneous wound healing and show that C3(-/-) mice exhibit accelerated early stages of wound healing. Reconstitution of C3(-/-) mice with serum from C3(+/+) mice or purified human C3 abrogated the accelerated wound-healing phenotype. Wound histology of C3(-/-) mice revealed a reduction in inflammatory infiltrate compared with C3(+/+) mice. C3 deficiency also resulted in increased accumulation of mast cells and advanced angiogenesis. We further show that mice deficient in the downstream complement effector C5 exhibit a similar wound-healing phenotype, which is recapitulated in C5aR1(-/-) mice, but not C3aR(-/-) or C5aR2(-/-) mice. Taken together, these data suggest that C5a signaling through C5aR may in part play a pivotal role in recruitment and activation of inflammatory cells to the wound environment, which in turn could delay the early stages of cutaneous wound healing. These findings also suggest a previously underappreciated role for complement in wound healing, and may have therapeutic implications for conditions of delayed wound healing.


Subject(s)
Complement System Proteins/deficiency , Skin/immunology , Skin/injuries , Wound Healing/immunology , Animals , Complement C3/deficiency , Complement C3/genetics , Complement C3/immunology , Complement C5a/genetics , Complement C5a/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Male , Mice , Mice, Knockout , Models, Immunological , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/immunology , Receptors, Complement/genetics , Receptors, Complement/metabolism , Skin/metabolism , Skin/pathology , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...