Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; 45(1): e2300437, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37811808

ABSTRACT

Polymer semiconductors frequently form crystals or mesophases with lamellae, that comprise alternating layers of stacked backbones and side chains. Controlling lamellar orientation in films is essential for obtaining efficient charge carrier transport. Herein, lamellar orientation is investigated in an application-relevant setup: lamellae assembled on a substrate that strongly favors face-on orientation, but exposed to a film surface that promotes orientation along an "easy" direction, other than face on. It is assumed that the face-on order propagates from the substrate, but the lamellae bend to reduce their surface energy. A qualitative free-energy model is developed. The deformation is investigated as a function of film thickness, effective Young modulus, anchoring coefficient, and easy direction at the free surface. The calculations highlight the importance of elastic constants - lamellae can substantially deform already when Young moduli are only an order of magnitude smaller than the values that are reported for crystals. Softer Young moduli are expected when lamellar assembly occurs in a non-solidified mesophase that can be an equilibrium or (more speculatively) a transient state prior to crystallization. The alternative scenario of a two-layered film is also evaluated, where edge-on and face-on grains form, respectively, at the free surface and substrate.


Subject(s)
Polymers , Semiconductors , Polymers/chemistry , Crystallization , Entropy , Elastic Modulus
2.
Adv Mater ; 36(9): e2305367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100279

ABSTRACT

In organic semiconductors, a donor/acceptor heterojunction is typically required for efficient dissociation of excitons. Using transient absorption spectroscopy to study the dynamics of excited states in non-fullerene acceptors (NFAs), it is shown that NFAs can generate charges without a donor/acceptor interface. This is due to the fact that dielectric solvation provides a driving force sufficient to dissociate the excited state and form the charge-transfer (CT) state. The CT state is further dissociated into free charges at interfaces between polycrystalline regions in neat NFAs. For IEICO-4F, incorporating just 9 wt% donor polymer PTB7-Th in neat films greatly boosts charge generation, enhancing efficient exciton separation into free charges. This property is utilized to fabricate donor-dilute organic photovoltaics (OPV) delivering a power conversion efficiency of 8.3% in the case of opaque devices with a metal top-electrode and an active layer average visible transmittance (AVT) of 75%. It is shown that the intrinsic charge generation in low-bandgap NFAs contributes to the overall photocurrent generation. IEICO-4F-based OPVs with limited PTB7-Th content have high thermal resilience demonstrating little drop in performance over 700 h. PTB7-Th:IEICO-4F semitransparent OPVs are leveraged to fabricate an 8-series connected semitransparent module, demonstrating light-utilization efficiency of 2.2% alongside an AVT of 63%.

3.
Sci Rep ; 13(1): 4717, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949087

ABSTRACT

Bimolecular charge recombination is one of the most important loss processes in organic solar cells. However, the bimolecular recombination rate in solar cells based on novel non-fullerene acceptors is mostly unclear. Moreover, the origin of the reduced-Langevin recombination rate in bulk heterojunction solar cells in general is still poorly understood. Here, we investigate the bimolecular recombination rate and charge transport in a series of high-performance organic solar cells based on non-fullerene acceptors. From steady-state dark injection measurements and drift-diffusion simulations of the current-voltage characteristics under illumination, Langevin reduction factors of up to over two orders of magnitude are observed. The reduced recombination is essential for the high fill factors of these solar cells. The Langevin reduction factors are observed to correlate with the quadrupole moment of the acceptors, which is responsible for band bending at the donor-acceptor interface, forming a barrier for charge recombination. Overall these results therefore show that suppressed bimolecular recombination is essential for the performance of organic solar cells and provide design rules for novel materials.

4.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202458

ABSTRACT

The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose long-term conformational dynamics are similar to the dynamics of bistable mechanical systems such as Euler arches and Duffing oscillators. Collective synchrony in bistable dynamics of molecular-sized systems has attracted immense attention as a potential pathway to amplify the output signals of molecular nanodevices. Recently, pyridine-furan oligomers of helical shape that are a few nanometers in size and exhibit bistable dynamics similar to a Duffing oscillator have been identified through molecular dynamics simulations. In this article, we present the case of dynamical synchronization of these bistable systems. We show that two pyridine-furan springs connected by a rigid oligomeric bridge spontaneously synchronize vibrations and stochastic resonance enhances the synchronization effect.

5.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202496

ABSTRACT

There is growing interest in molecular structures that exhibit dynamics similar to bistable mechanical systems. These structures have the potential to be used as two-state operating units for various functional purposes. Particularly intriguing are the bistable systems that display spontaneous vibrations and stochastic resonance. Previously, via molecular dynamics simulations, it was discovered that short pyridine-furan springs in water, when subjected to stretching with power loads, exhibit the bistable dynamics of a Duffing oscillator. In this study, we extend these simulations to include short pyridine-pyrrole and pyridine-furan springs in a hydrophobic solvent. Our findings demonstrate that these systems also display the bistable dynamics, accompanied by spontaneous vibrations and stochastic resonance activated by thermal noise.

7.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34947612

ABSTRACT

The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose dynamics are similar to those of bistable mechanical systems, such as Euler arches and Duffing oscillators. Of particular interest are the molecular structures capable of spontaneous vibrations and stochastic resonance. Recently, oligomeric molecules that were a few nanometers in size and exhibited the bistable dynamics of an Euler arch were identified through molecular dynamics simulations of short fragments of thermo-responsive polymers subject to force loading. In this article, we present molecular dynamics simulations of short pyridine-furan springs a few nanometers in size and demonstrate the bistable dynamics of a Duffing oscillator with thermally-activated spontaneous vibrations and stochastic resonance.

8.
Ambio ; 50(11): 2009-2021, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34559390

ABSTRACT

An assessment of the socio-ecological system of the Nature Park "Numto" in West Siberia was carried out based on ecosystem services (ES) mapping, applying a "cascade approach" which was modified according to the specific conditions of low commercial land-use by Indigenous Peoples and adopted with a focus on making it practicable and understandable by decision-makers. The ES values were defined through stakeholder analysis, while the mapping was based on the biophysical traits of the ecosystems and related spatial distribution of ecosystem functions. The mapped ecosystem values differ from the perceived ones. The assessment identified conflicting land uses and groups of stakeholders, including Indigenous Peoples vulnerable to future climate change-induced deficits in access to ES. The ES that are important for climate change mitigation and adaptation are not valued highly by Indigenous Peoples. ES mapping is suggested as an appropriate method for the development of straightforward recommendations for Nature Park management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Climate Change , Humans , Siberia
9.
Nat Mater ; 20(3): 378-384, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33106652

ABSTRACT

In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor-acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor-NFA interface caused by the acceptors' quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.

10.
Nanomaterials (Basel) ; 10(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334035

ABSTRACT

Ultra-sensitive elements for nanoscale devices capable of detecting single molecules are in demand for many important applications. It is generally accepted that the inevitable stochastic disturbance of a sensing element by its surroundings will limit detection at the molecular level. However, a phenomenon exists (stochastic resonance) in which the environmental noise acts abnormally: it amplifies, rather than distorts, a weak signal. Stochastic resonance is inherent in non-linear bistable systems with criticality at which the bistability emerges. Our computer simulations have shown that the large-scale conformational dynamics of a short oligomeric fragment of thermosrespective polymer, poly-N-isopropylmethacrylamid, resemble the mechanical movement of nonlinear bistable systems. The oligomers we have studied demonstrate spontaneous vibrations and stochastic resonance activated by conventional thermal noise. We have observed reasonable shifts of the spontaneous vibrations and stochastic resonance modes when attaching an analyte molecule to the oligomer. Our simulations have shown that spontaneous vibrations and stochastic resonance of the bistable thermoresponsive oligomers are sensitive to both the analyte molecular mass and the binding affinity. All these effects indicate that the oligomers with mechanic-like bistability may be utilized as ultrasensitive operational units capable of detecting single molecules.

11.
Nat Commun ; 11(1): 5220, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060574

ABSTRACT

The short exciton diffusion length associated with most classical organic semiconductors used in organic photovoltaics (5-20 nm) imposes severe limits on the maximum size of the donor and acceptor domains within the photoactive layer of the cell. Identifying materials that are able to transport excitons over longer distances can help advancing our understanding and lead to solar cells with higher efficiency. Here, we measure the exciton diffusion length in a wide range of nonfullerene acceptor molecules using two different experimental techniques based on photocurrent and ultrafast spectroscopy measurements. The acceptors exhibit balanced ambipolar charge transport and surprisingly long exciton diffusion lengths in the range of 20 to 47 nm. With the aid of quantum-chemical calculations, we are able to rationalize the exciton dynamics and draw basic chemical design rules, particularly on the importance of the end-group substituent on the crystal packing of nonfullerene acceptors.

12.
Adv Mater ; 32(9): e1906763, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31975446

ABSTRACT

Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.

13.
J Phys Chem Lett ; 10(17): 5189-5192, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31436431

ABSTRACT

The desire to create nanometer-scale switching devices has motivated an active search for bistate macromolecular systems allowing for sharp conformational transitions in response to stimuli. Using full-atomic simulations, we found particular oligomers of thermosensitive polymers, themselves only a few nanometers in size, that possessed conformational bistability and reacted to power loads as nonlinear mechanical systems, termed "catastrophe machines". We established the bifurcation and hysteresis effects, spontaneous vibrations, and stochastic resonance for these oligomers. It is important to note that the spontaneous vibrations and stochastic resonance were activated by thermal fluctuations. Because of such mechanic-like characteristics, short oligomers are a promising platform for the design of nanodevices and molecular machines.

14.
J Phys Chem B ; 121(33): 7878-7888, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28737387

ABSTRACT

The influence of inorganic salt on the structure of lecithin/bile salt mixtures in aqueous solution is studied by means of dissipative particle dynamics simulations. We propose a coarse-grained model of phosphatidylcholine and two types of bile salts (sodium cholate and sodium deoxycholate) and also take into account the presence of low molecular weight salt. This model allows us to study the system on rather large time and length scales (up to about ∼20 µs and 50 nm) and to reveal mechanisms of experimentally observed increasing viscosity upon increasing the low molecular weight salt concentration in this system. We show that increasing the low molecular weight salt concentration induces the growth of cylinder-like micelles formed in lecithin/bile salt mixtures in water. These wormlike micelles can entangle into transient networks displaying perceptible viscoelastic properties. Computer simulation results are in good qualitative agreement with experimental observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...