Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 652: 123816, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38246479

ABSTRACT

A better understanding of crystallization kinetics and the effect on drug product quality characteristics is needed to exploit the use of semi-crystalline polymers in pharmaceutical fused filament fabrication. Filaments were prepared from polycaprolactone or polyethylene oxide loaded with a crystallization inhibitor or inducer, which was either 10% (w/w) ibuprofen or theophylline. A design-of-experiments approach was conducted to investigate the effect of nozzle temperature, bed temperature and print speed on the printed tablets' microstructure and dissolution kinetics. Helium pycnometry derived porosity proved an ideal technique to capture significant distortions in the tablets' microstructure. On the other hand, terahertz time domain spectroscopy (THz-TDS) analysis proved valuable to investigate additional enclosed pores of the tablets' microstructure. The surface roughness was analyzed using optical coherence tomography, showing the importance of extensional viscosity for printed drug products. Drug release occurred via erosion for tablets consisting of polyethylene oxide, which partly reduced the effect of the inner microstructure on the drug release kinetics. An initial burst release effect was noted for polycaprolactone tablets, after which drug release continued via diffusion. Both the pore and crystalline microstructure were deemed essential to steer drug release. In conclusion, this research provided guidelines for material and process choice when a specific microstructure has to be constructed from semi-crystalline materials. In addition, non-destructive tests for the characterization of printed products were evaluated.


Subject(s)
Polyethylene Glycols , Polymers , Porosity , Drug Liberation , Tablets/chemistry , Polymers/chemistry , Technology, Pharmaceutical/methods , Printing, Three-Dimensional , Solubility
2.
Int J Pharm ; 635: 122691, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36764420

ABSTRACT

Consistent powder micro-feeding (<100 g/h) is a significant challenge in manufacturing solid oral dosage forms. The low dose feeding can well control the content consistency of the dosage forms, which improves drug efficiency and reduces manufacturing waste. Current commercial micro-feeders are limited in their ability to feed < 20 g/h of cohesive (i.e. powders of poor flowability) active pharmaceutical ingredients (API) and excipients (e.g. lubricants) with low fluctuation. To breach this gap, this study presents an advanced micro-feeder design capable of feeding a range of pharmaceutical-grade powders consistently at flow rates as low as 0.7 g/h with <20 % flow rate variation. This was possible due to a novel powder conveying concept utilising particle re-entrainment to minimise flow rate variations. This work details the design of this pneumatic micro-feeder and its excellent micro-feeding performance even for cohesive powders. The experimental studies investigated the influence of the process parameters (air pressure and air flow rate) and equipment configurations (insert size and plug position) on the feeding performance of different pharmaceutical-relevant powders, i.e., microcrystalline cellulose (MCC), croscarmellose sodium (CCS), crospovidone (XPVP) and paracetamol (APAP). It was shown that the system is capable of delivering consistent powder flow rates with good repeatability and stability.


Subject(s)
Carboxymethylcellulose Sodium , Excipients , Powders/chemistry , Excipients/chemistry , Technology, Pharmaceutical , Particle Size
3.
Int J Pharm ; 572: 118756, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31648017

ABSTRACT

Current study evaluated the processability and characteristics of prills made of an active pharmaceutical ingredient/fatty acid (API/FA) suspension instead of previously studied API/FA solutions to enlarge the application field of prilling. Metformin hydrochloride (MET) and paracetamol (PAR) were used as model APIs while both the effect of drug load (10-40%) and FA chain length (C14-C22) were evaluated. API/FA suspensions were processable on lab-scale prilling equipment without thermal degradation, nozzle obstruction or sedimentation in function of processing time. The collected prills were spherical (AR ≥ 0.898) with a smooth surface (sphericity ≥ 0.914) and a particle size of ±2.3 mm and 2.4 mm for MET and PAR prills, respectively, independent of drug load and/or FA chain length. In vitro drug release evaluation revealed a faster drug release at higher drug load, higher API water solubility and shorter FA chain length. Solid state characterisation via XRD and Raman spectroscopy showed that API and FA crystallinity was maintained after thermal processing via prilling and during storage. Evaluation of the similarity factor indicated a stable drug release (f2 > 50) from MET and PAR prills after 6 months storage at 25 °C or 40 °C.


Subject(s)
Acetaminophen/chemistry , Fatty Acids/chemistry , Metformin/chemistry , Suspensions/chemistry , Crystallization/methods , Drug Compounding/methods , Drug Liberation , Excipients/chemistry , Particle Size , Solubility , Spectrum Analysis, Raman/methods
4.
Int J Pharm ; 547(1-2): 169-180, 2018 Aug 25.
Article in English | MEDLINE | ID: mdl-29782971

ABSTRACT

In contact-less printing, such as piezo-electric drop on demand printing used in the study, the drop formation process is independent of the substrate. This means that having developed a printable formulation, printed pharmaceutical dosage forms can be obtained on any pharmaceutical grade substrate, such as polymer-based films. In this work we evaluated eight different oral films based on their suitability as printing substrates for sodium picosulfate. The different polymer films were compared regarding printed spot morphology, chemical stability and dissolution profile. The morphology of printed sodium picosulfate was investigated with scanning electron microscopy and optical coherence tomography. The spreading of the deposited drops was found to be governed by the contact angle of the ink with the substrate. The form of the sodium picosulfate drops changed on microcrystalline cellulose films at ambient conditions over 8 weeks and stayed unchanged on other tested substrates. Sodium picosulfate remained amorphous on all substrates according to small and wide angle X-ray scattering, differential scanning calorimetry and polarized light microscopy measurements. The absence of chemical interactions between the drug and substrates, as indicated by infrared spectroscopy, makes all tested substrates suitable for printing sodium picosulfate onto them.


Subject(s)
Drug Compounding/methods , Drug Delivery Systems , Printing , Administration, Oral , Cellulose/chemistry , Citrates/chemistry , Drug Liberation , Gelatin/chemistry , Hypromellose Derivatives/chemistry , Organometallic Compounds/chemistry , Picolines/chemistry , Titanium/chemistry , Wettability
5.
Int J Pharm ; 511(2): 840-54, 2016 Sep 25.
Article in English | MEDLINE | ID: mdl-27497996

ABSTRACT

The objective of this study was to analyze differences in the subtle microstructure of three different grades of HMPC hard capsule shells using mechanical, spectroscopic, microscopic and tomographic approaches. Dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), vibrational spectroscopic, X-Ray scattering techniques as well as environmental scanning electron microscopy (ESEM) and optical coherence tomography (OCT) were used. Two HPMC capsules manufactured via chemical gelling, one capsule shell manufactured via thermal gelling and one thermally gelled transparent capsule were included. Characteristic micro-structural alterations (associated manufacturing processes) such as mechanical and physical properties relevant to capsule performance and processability were thoroughly elucidated with the integration of data obtained from multi-methodological investigations. The physico-chemical and physico-mechanical data obtained from a gamut of techniques implied that thermally gelled HPMC hard capsule shells could offer an advantage in terms of machinability during capsule filling, owing to their superior micro- and macroscopic structure as well as specifically the mechanical stability under dry or humid conditions.


Subject(s)
Capsules/chemistry , Chemical Phenomena , Hypromellose Derivatives/chemistry , Mechanical Phenomena , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...