Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 265: 46-53, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29101025

ABSTRACT

This study evaluates a biorefinery concept for producing poly(3-hydroxybutyrate) (PHB) with the cyanobacterial strain Synechocystis salina. Due to this reason, pigment extraction and cell disruption were investigated as pre-treatment steps for the harvested cyanobacterial biomass. The results demonstrated that at least pigment removal was necessary to obtain PHB with processable quality (weight average molecular weight: 569-988kgmol-1, melting temperature: 177-182°C), which was comparable to heterotrophically produced PHB. The removed pigments could be utilised as additional by-products (chlorophylls 0.27-1.98mgg-1 TS, carotenoids 0.21-1.51mgg-1 TS, phycocyanin 0-127mgg-1 TS), whose concentration depended on the used nutrient source. Since the residual biomass still contained proteins (242mgg-1 TS), carbohydrates (6.1mgg-1 TS) and lipids (14mgg-1 TS), it could be used as animal feed or converted to biomethane (348 mn3 t-1VS) and fertiliser. The obtained results indicate that the combination of photoautotrophic PHB production with pigment extraction and utilisation of residual biomass offer the highest potential, since it contributes to decrease the environmental footprint of the process and because biomass could be used in a cascading way and the nutrient cycle could be closed.


Subject(s)
Hydroxybutyrates/metabolism , Polyesters/metabolism , Synechocystis/metabolism , Biomass , Carbohydrate Metabolism , Cupriavidus necator/metabolism , Lipid Metabolism , Pigments, Biological/metabolism
2.
J Biotechnol ; 240: 61-67, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27984118

ABSTRACT

Within the last decades, environmental pollution with persistent plastics steadily increased; therefore the production of biodegradable materials like poly-ß-hydroxybutyrate (PHB) is essential. Currently, PHB is produced with heterotrophic bacteria from crops. This leads to competition with food and feed production, which can be avoided by using photoautotrophic cyanobacteria, as Synechocystis salina, synthesizing PHB from CO2 at nutrient limitation. This study aims to increase the economic efficiency of PHB production with cyanobacteria by using nutrients from anaerobic digestate. First, growth and PHB production of S. salina in digestate fractions (supernatant and permeate, with/without precipitating agents) and dilutions thereof and then the scale-up (photobioreactor, 200 L working volume) were evaluated. With precipitated and centrifuged digestate diluted 1/3 the highest biomass (1.55gL-1) and PHB concentrations (95.4mgL-1), being 78% of those in mineral media, were achieved. In the photobioreactor-experiments biomass (1.63gL-1) and PHB concentrations (88.7mgL-1), being 79% and 72% of those in mineral medium, were reached, but in a cultivation time 10days longer than in mineral medium. The possibility to use digestate as sustainable and low cost nutrient solution for microalgae cultivation and photoautotrophic PHB production, instead of applying it on fields or processing it to achieve discharge limits, makes this application a highly valid option.


Subject(s)
Hydroxybutyrates/pharmacology , Polyesters/pharmacology , Synechocystis/metabolism , Biotechnology , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Solutions , Synechocystis/cytology , Synechocystis/drug effects , Synechocystis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...