Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925876

ABSTRACT

The present study investigates the effect of shot peening (SP) on the mechanical properties and surface roughness of 7075 aluminum alloy during different stages and conditions of heat treatment. The mechanical properties were determined by measuring Vickers microhardness profiles and residual stress profiles, while the amount of alloying elements present in the solid solution of the samples under different heat treatment conditions was determined by measuring the electrical conductivity. The results show that the increase in microhardness near the SP surface and the maximum compressive residual stresses are mainly related to the content of alloying elements in the solid solution. Surface roughness increases with increasing SP Almen intensity, and samples with the highest microhardness and residual stresses have the lowest surface roughness.

2.
Materials (Basel) ; 9(5)2016 May 17.
Article in English | MEDLINE | ID: mdl-28773502

ABSTRACT

The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces.

3.
Microsc Microanal ; 19(5): 1308-16, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23773577

ABSTRACT

This work studied the phases in the Al corner of the Al-Mn-Be phase diagram in the as-cast state and heat-treated conditions. Metallographic investigations, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy were used for identifying the phases. The Be contents in the identified phases were precisely determined using Auger electron spectroscopy. The results indicated that Al6Mn does not dissolve Be, whilst λ-Al4Mn dissolves up to 7 at.% Be. The average composition of the T phase, which is normally designated as Al15Mn3Be2, was 72 at.% Al, 19 at.% Mn, and 9 at.% Be. The phase with the nominal composition Be4AlMn contained more Al than Mn. The atomic ratio Al:Mn was between 1.3:1 and 2:1. The hexagonal Be-rich phase did not dissolve any Al and Mn. The icosahedral quasicrystalline (IQC) phase contained up to 45 at.% Be. The compositions of T phase, λ-Al4Mn, IQC, and Be4AlMn may vary, however, the ratio (Al + Be):Mn remained constant, and was close either to four or six indicating substitution of Al atoms with Be atoms in these phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...