Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275688

ABSTRACT

Micellar calcium phosphate (MCP) content of skim milk was modified by pH adjustment followed by dialysis. Turbidity, casein micelle size and partitioning of Ca and caseins between the colloidal and soluble phases of milk were determined. Protein structure was characterised by Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H NMR), whereas organic and inorganic phosphorus were studied by phosphorus-31 nuclear magnetic resonance (31P NMR). The sample with the lowest MCP content (MCP7) exhibited the smallest particle size and turbidity, measuring 83 ± 8 nm and 0.08 ± 0.01 cm-1, respectively. Concentrations of soluble caseins increased with decreasing MCP levels. At ~60% MCP removal, FTIR analysis indicated a critical stage of structural rearrangement and 31P NMR analysis showed an increase in signal intensity for Ca-free Ser-P, which further increased as MCP concentration was further reduced. In conclusion, this study highlighted the importance of MCP in maintaining micellar structure and its impact on the integrity of casein micelle.

2.
Molecules ; 26(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34946731

ABSTRACT

This study investigated structural changes in ß-casein as a function of temperature (4 and 20 °C) and pH (5.9 and 7.0). For this purpose, nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were used, in conjunction with chemometric analysis. Both temperature and pH had strongly affected the secondary structure of ß-casein, with most affected regions involving random coils and α-helical structures. The α-helical structures showed great pH sensitivity by decreasing at 20 °C and diminishing completely at 4 °C when pH was increased from 5.9 to 7.0. The decrease in α-helix was likely related to the greater presence of random coils at pH 7.0, which was not observed at pH 5.9 at either temperature. The changes in secondary structure components were linked to decreased hydrophobic interactions at lower temperature and increasing pH. The most prominent change of the α-helix took place when the pH was adjusted to 7.0 and the temperature set at 4 °C, which confirms the disruption of the hydrogen bonds and weakening of hydrophobic interactions in the system. The findings can assist in establishing the structural behaviour of the ß-casein under conditions that apply as important for solubility and production of ß-casein.


Subject(s)
Caseins/chemistry , Animals , Cattle , Chemometrics , Hot Temperature , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Spectroscopy, Fourier Transform Infrared
3.
J Dairy Sci ; 104(3): 2834-2842, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33455749

ABSTRACT

Heating, pressurization, and shearing can modify native milk proteins. The effects of pressurized heating (0.5 vs. 10 MPa at 75 or 95°C) with shearing (1,000 s-1) on proteins of raw bovine skim milk (SM, ∼9% total solids) and concentrated raw skim milk (CSM, ∼22% total solids) was investigated. The effects of evaporative concentration at 55°C and pressurized shearing (10 MPa, 1,000 s-1) at 20°C were also examined. Evaporative concentration of SM resulted in destabilization of casein micelles and dissociation of αS1- and ß-casein, rendering CSM prone to further reactions. Treatment at 10 MPa and 1,000 s-1 at 20°C caused substantial dissociation of αS1- and ß-casein in SM and CSM, with some dissociated caseins forming shear-induced soluble aggregates in CSM. The pressure applied at 10 MPa induced compression of the micelles and their dissociation in SM and CSM at 75 or 95°C, resulting in reduction of the micelle size. However, 10 MPa did not alter the mineral balance or whey proteins denaturation largely, except by reduction of some ß-sheets and α-helices, due to heat-induced conformational changes at 75 and 95°C.


Subject(s)
Caseins , Milk Proteins , Animals , Cattle , Hot Temperature , Micelles , Milk/chemistry , Milk Proteins/analysis , Protein Denaturation , Whey Proteins
4.
Foods ; 9(8)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824355

ABSTRACT

Changes in the molecular structure and association of milk proteins lead to many desirable (under controlled conditions) or undesirable characteristics of dairy products. Several methods have been used to study the structure of milk proteins and changes therein in different environments. Whey proteins are an excellent model for secondary structure studies using circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR) and tertiary structure studies using X-ray crystallography and nuclear magnetic resonance (NMR). However, caseins, the most abundant protein class in milk, are far more difficult to characterize. The tertiary structure of caseins cannot be observed by X-ray crystallography due to the inability to crystallize caseins. However, NMR is an appropriate approach for structural elucidation. Thus far, NMR was applied on specific peptides of individual caseins of the molecules including phosphoserine centers and colloidal calcium phosphate. The literature focuses on these parts of the molecule due to its importance in building the sub-unit particles involving individual caseins and calcium phosphate nanoclusters. This review focuses on present structural studies of milk proteins using NMR and their importance in dairy processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...