Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2679: 287-304, 2023.
Article in English | MEDLINE | ID: mdl-37300624

ABSTRACT

Stereolithography based additive manufacturing ("3D printing") has become a useful tool for the development of novel microfluidic in vitro platforms. This method of manufacturing can reduce production time while allowing for rapid design iteration and complex monolithic structures. The platform described in this chapter has been designed for the capture and evaluation of cancer spheroids in perfusion. Spheroids are created in 3D Petri dishes, stained, and loaded into these 3D printed devices and imaged over time under flow conditions. This design allows for active perfusion into complex 3D cellular constructs resulting in longer viability while providing results which better mimic in vivo conditions compared to traditional monolayer static culture.


Subject(s)
Cell Culture Techniques , Neoplasms , Humans , Cell Culture Techniques/methods , Printing, Three-Dimensional , Stereolithography , Perfusion
2.
Lab Chip ; 21(23): 4637-4651, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34730597

ABSTRACT

Microfluidic lab-on-a-chip devices are changing the way that in vitro diagnostics and drug development are conducted, based on the increased precision, miniaturization and efficiency of these systems relative to prior methods. However, the full potential of microfluidics as a platform for therapeutic medical devices such as extracorporeal organ support has not been realized, in part due to limitations in the ability to scale current designs and fabrication techniques toward clinically relevant rates of blood flow. Here we report on a method for designing and fabricating microfluidic devices supporting blood flow rates per layer greater than 10 mL min-1 for respiratory support applications, leveraging advances in precision machining to generate fully three-dimensional physiologically-based branching microchannel networks. The ability of precision machining to create molds with rounded features and smoothly varying channel widths and depths distinguishes the geometry of the microchannel networks described here from all previous reports of microfluidic respiratory assist devices, regarding the ability to mimic vascular blood flow patterns. These devices have been assembled and tested in the laboratory using whole bovine or porcine blood, and in a porcine model to demonstrate efficient gas transfer, blood flow and pressure stability over periods of several hours. This new approach to fabricating and scaling microfluidic devices has the potential to address wide applications in critical care for end-stage organ failure and acute illnesses stemming from respiratory viral infections, traumatic injuries and sepsis.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Animals , Cattle , Equipment Design , Swine
3.
Front Med Technol ; 3: 646441, 2021.
Article in English | MEDLINE | ID: mdl-35047914

ABSTRACT

Microfluidic systems for the analysis of tissue models of cancer and other diseases are rapidly emerging, with an increasing recognition that perfusion is required to recapitulate critical aspects of the in vivo microenvironment. Here we report on the first application of 3D printing for the fabrication of monolithic devices suitable for capturing and imaging tumor spheroids under dynamic perfusion flow. Resolution of the printing process has been refined to a level sufficient to obtain high precision features that enable capture and retention of tumor spheroids in a perfusion flow stream that provides oxygen and nutrient requirements sufficient to sustain viability over several days. Use of 3D printing enables rapid design cycles, based on optimization of computational fluid dynamic analyses, much more rapidly than conventional techniques involving replica molding from photolithographic masters. Ultimately, these prototype design and fabrication approaches may be useful in generating highly multiplexed monolithic arrays capable of supporting rapid and efficient evaluation of therapeutic candidates in the cancer drug discovery process.

4.
Biotechnol Bioeng ; 116(12): 3409-3420, 2019 12.
Article in English | MEDLINE | ID: mdl-30963546

ABSTRACT

Hepatic in vitro platforms ranging from multi-well cultures to bioreactors and microscale systems have been developed as tools to recapitulate cellular function and responses to aid in drug screening and disease model development. Recent developments in microfabrication techniques and cellular materials enabled fabrication of next-generation, advanced microphysiological systems (MPSs) that aim to capture the cellular complexity and dynamic nature of the organ presenting highly controlled extracellular cues to cells in a physiologically relevant context. Historically, MPSs have heavily relied on elastomeric materials in their manufacture, with unfavorable material characteristics (such as lack of structural rigidity) limiting their use in high-throughput systems. Herein, we aim to create a microfluidic bilayer model (microfluidic MPS) using thermoplastic materials to allow hepatic cell stabilization and culture, retaining hepatic functional phenotype and capturing cellular interactions. The microfluidic MPS consists of two overlapping microfluidic channels separated by a porous tissue-culture membrane that acts as a surface for cellular attachment and nutrient exchange; and an oxygen permeable material to stabilize and sustain primary human hepatocyte (PHH) culture. Within the microfluidic MPS, PHHs are cultured in the top channel in a collagen sandwich gel format with media exchange accomplished through the bottom channel. We demonstrate PHH culture for 7 days, exhibiting measures of hepatocyte stabilization, secretory and metabolic functions. In addition, the microfluidic MPS dimensions provide a reduced media-to-cell ratio in comparison with multi-well tissue culture systems, minimizing dilution and enabling capture of cellular interactions and responses in a hepatocyte-Kupffer coculture model under an inflammatory stimulus. Utilization of thermoplastic materials in the model and ability to incorporate multiple hepatic cells within the system is our initial step towards the development of a thermoplastic-based high-throughput microfluidic MPS platform for hepatic culture. We envision the platform to find utility in development and interrogation of disease models of the liver, multi-cellular interactions and therapeutic responses.


Subject(s)
Cell Communication , Cell Culture Techniques , Hepatocytes , Lab-On-A-Chip Devices , Liver , Microfluidic Analytical Techniques , Drug Evaluation, Preclinical , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Liver/cytology , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...