Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 12(5): e1001850, 2014 May.
Article in English | MEDLINE | ID: mdl-24802715

ABSTRACT

Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.


Subject(s)
Animal Distribution/physiology , Environment , Introduced Species/statistics & numerical data , Plant Dispersal/physiology , Animals , Biodiversity , Extinction, Biological , Food Chain , Herbivory/physiology , Human Activities/trends , Humans , Plants/microbiology , Plants/parasitology , Plants/virology , Population Dynamics/trends , Predatory Behavior/physiology , Soil/chemistry , Species Specificity , Uncertainty
2.
Cell ; 151(3): 603-18, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23101628

ABSTRACT

Whereas proliferating cells enter M phase shortly after DNA replication, the first M phase of meiosis is preceded by an extended prophase in which homologous chromosomes undergo recombination. Exit from prophase I is controlled by the recombination checkpoint (RC), which, in yeast, represses the meiosis-specific transcription factor Ndt80 required for the expression of B-type cyclins and other M phase regulators. We show that an extended prophase I additionally requires the suppression of latent, mitotic cell-cycle controls by the anaphase-promoting complex (APC/C) and its meiosis-specific activator Ama1, which trigger the degradation of M phase regulators and Ndd1, a subunit of a mitotic transcription factor. ama1Δ mutants exit from prophase I prematurely and independently of the RC, which results in recombination defects and chromosome missegregation. Thus, control of prophase I by meiotic mechanisms depends on the suppression of the alternative, mitotic mechanisms by a meiosis-specific form of the APC/C.


Subject(s)
Cell Cycle Proteins/metabolism , Meiosis , Prophase , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase-Promoting Complex-Cyclosome , Cdc20 Proteins , Chromosome Segregation , Chromosomes, Fungal/metabolism , DNA-Binding Proteins/metabolism , Metaphase , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Spindle Apparatus , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...