Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477563

ABSTRACT

E-selectin is a vascular adhesion molecule expressed mainly on endothelium, and its primary role is to facilitate leukocyte cell trafficking by recognizing ligand surface proteins. E-selectin gained a new role since it was demonstrated to be involved in cancer cell trafficking, stem-like properties and therapy resistance. Therefore, being expressed in the tumor microenvironment, E-selectin can potentially be used to eradicate cancer. Uproleselan (also known as GMI-1271), a specific E-selectin antagonist, has been tested on leukemia, myeloma, pancreatic, colon and breast cancer cells, most of which involve the bone marrow as a primary or as a metastatic tumor site. This novel therapy disrupts the tumor microenvironment by affecting the two main steps of metastasis-extravasation and adhesion-thus blocking E-selectin reduces tumor dissemination. Additionally, uproleselan mobilized cancer cells from the protective vascular niche into the circulation, making them more susceptible to chemotherapy. Several preclinical and clinical studies summarized herein demonstrate that uproleselan has favorable safety and pharmacokinetics and is a tumor microenvironment-disrupting agent that improves the efficacy of chemotherapy, reduces side effects such as neutropenia, intestinal mucositis and infections, and extends overall survival. This review highlights the critical contribution of E-selectin and its specific antagonist, uproleselan, in the regulation of cancer growth, dissemination, and drug resistance in the context of the bone marrow microenvironment.

2.
Nat Commun ; 11(1): 6037, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247158

ABSTRACT

Drug resistance and dose-limiting toxicities are significant barriers for treatment of multiple myeloma (MM). Bone marrow microenvironment (BMME) plays a major role in drug resistance in MM. Drug delivery with targeted nanoparticles have been shown to improve specificity and efficacy and reduce toxicity. We aim to improve treatments for MM by (1) using nanoparticle delivery to enhance efficacy and reduce toxicity; (2) targeting the tumor-associated endothelium for specific delivery of the cargo to the tumor area, and (3) synchronizing the delivery of chemotherapy (bortezomib; BTZ) and BMME-disrupting agents (ROCK inhibitor) to overcome BMME-induced drug resistance. We find that targeting the BMME with P-selectin glycoprotein ligand-1 (PSGL-1)-targeted BTZ and ROCK inhibitor-loaded liposomes is more effective than free drugs, non-targeted liposomes, and single-agent controls and reduces severe BTZ-associated side effects. These results support the use of PSGL-1-targeted multi-drug and even non-targeted liposomal BTZ formulations for the enhancement of patient outcome in MM.


Subject(s)
Bortezomib/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Nanoparticles/chemistry , Protein Kinase Inhibitors/therapeutic use , Tumor Microenvironment , rho-Associated Kinases/antagonists & inhibitors , Amides/pharmacology , Amides/therapeutic use , Animals , Apoptosis/drug effects , Bortezomib/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Liposomes , Membrane Glycoproteins/metabolism , Mice , P-Selectin/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use , Signal Transduction/drug effects , Tumor Burden , Tumor Microenvironment/drug effects , rho-Associated Kinases/metabolism , src-Family Kinases/metabolism
3.
Cancers (Basel) ; 12(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012878

ABSTRACT

Multiple myeloma (MM) remains to be incurable despite recent therapeutic advances. CD47, an immune checkpoint known as the "don't eat me" signal, is highly expressed on the surface of various cancers, allowing cancer cells to send inhibitory signals to macrophages and impede phagocytosis and immune response. In this study, we hypothesized that blocking the "don't eat me" signaling using an anti-CD47 monoclonal antibody will induce killing of MM cells. We report that CD47 expression was directly correlated with stage of the disease, from normal to MGUS to MM. Moreover, MM cells had remarkably higher CD47 expression than other cell populations in the bone marrow. These findings indicate that CD47 is specifically expressed on MM and can be used as a potential therapeutic target. Further, blocking of CD47 using an anti-CD47 antibody induced immediate activation of macrophages, which resulted in induction of phagocytosis and killing of MM cells in the 3D-tissue engineered bone marrow model, as early as 4 hours. These results suggest that macrophage checkpoint immunotherapy by blocking the CD47 "don't eat me" signal is a novel and promising strategy for the treatment of MM, providing a basis for additional studies to validate these effects in vivo and in patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...