Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Sports Act Living ; 6: 1368262, 2024.
Article in English | MEDLINE | ID: mdl-38979438

ABSTRACT

Introduction: Non-exercise estimates of cardiorespiratory fitness hold great utility for epidemiological research and clinical practice. Older adults may yield the greatest benefit from fitness estimates due to limited capacity to undergo strenuous maximal exercise testing, however, few of the previously developed non-exercise equations are suitable for use in older adults. Thus, the current study developed a non-exercise equation for estimating cardiorespiratory fitness in older adults derived from the widely used International Physical Activity Questionnaire (IPAQ). Methods: This study was a secondary analysis of baseline data from a randomized controlled trial. Participants were community-dwelling, cognitively unimpaired older adults aged 60-80 years (n = 92). They completed the IPAQ and underwent maximal exercise testing on a cycle ergometer. Stepwise linear regression was used to determine the equation in a randomly selected, sex-balanced, derivation subset of participants (n = 60), and subsequently validated using a second subset of participants (n = 32). Results: The final equation included age, sex, body mass index and leisure time activity from the IPAQ and explained 61% and 55% of the variance in the derivation and validation groups, respectively (standard error of estimates = 3.9, 4.0). Seventy-seven and 81% of the sample fell within ±1SD (5.96 and 6.28 ml·kg-1·min-1) of measured VO2peak for the derivation and validation subgroups. The current equation showed better performance compared to equations from Wier et al. (2006), Jackson et al. (1990), and Schembre & Riebe (2011), although it is acknowledged previous equations were developed for different populations. Conclusions: Using non-exercise, easily accessible measures can yield acceptable estimates of cardiorespiratory fitness in older adults, which should be further validated in other samples and examined in relation to public health outcomes.

2.
Geroscience ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488949

ABSTRACT

Physical activity is a promising preventative strategy for Alzheimer's disease: it is associated with lower dementia risk, better cognition, greater brain volume and lower brain beta-amyloid. Blood-based biomarkers have emerged as a low-cost, non-invasive strategy for detecting preclinical Alzheimer's disease, however, there is limited literature examining the effect of exercise (a structured form of physical activity) on blood-based biomarkers. The current study investigated the influence of a 6-month exercise intervention on levels of plasma beta-amyloid (Aß42, Aß40, Aß42/40), phosphorylated tau (p-tau181), glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) chain in cognitively unimpaired older adults, and as a secondary aim, whether blood-based biomarkers related to cognition. Ninety-nine community-dwelling older adults (69.1 ± 5.2) were allocated to an inactive control, or to moderate or high intensity exercise groups where they cycled twice weekly for six months. At baseline and six months (post-intervention), fasted blood was collected and analysed using single molecule array (SIMOA) assays, and cognition was assessed. Results demonstrated no change in levels of any plasma biomarker from pre- to post-intervention. At baseline, higher NfL was associated with poorer cognition (ß = -0.33, SE = 0.13, adjusted p = .042). Exploratory analyses indicated higher cardiorespiratory fitness was associated with higher NfL and GFAP levels in apolipoprotein E (APOE) ε4 non-carriers compared to ε4 carriers (NfL, ß = -0.43, SE = 0.19, p = .029; GFAP, ß = -0.41, SE = 0.20, p = .044), though this association was mediated by body mass index (BMI). These results highlight the importance of considering BMI in analysis of blood-based biomarkers, especially when investigating differences between APOE ε4 carriers and non-carriers. Our results also indicate that longer follow-up periods may be required to observe exercise-induced change in blood-based biomarkers.

3.
Int J Geriatr Psychiatry ; 38(10): e6016, 2023 10.
Article in English | MEDLINE | ID: mdl-37864564

ABSTRACT

OBJECTIVES: Observational studies consistently demonstrate that physical activity is associated with elevated cognitive function, however, there remains significant heterogeneity in cognitive outcomes from randomized exercise interventions. Individual variation in sleep behaviours may be a source of variability in the effectiveness of exercise-induced cognitive change, however this has not yet been investigated. The current study aimed to (1) investigate the influence of a 6-month exercise intervention on sleep, assessed pre- and post-intervention and, (2) investigate whether baseline sleep measures moderate exercise-induced cognitive changes. METHODS: We utilised data from the Intense Physical Activity and Cognition (IPAC) study (n = 89), a 6-month moderate intensity and high intensity exercise intervention, in cognitively unimpaired community-dwelling older adults aged 60-80 (68.76 ± 5.32). Exercise was supervised and completed on a stationary exercise bicycle, and cognitive function was measured using a comprehensive neuropsychological battery administered pre- and post-intervention. Sleep was measured using the Pittsburgh sleep quality index. There was no effect of the exercise intervention on any sleep outcomes from pre- to post-intervention. RESULTS: There was a significant moderating effect of baseline sleep efficiency on both episodic memory and global cognition within the moderate intensity exercise group, such that those with poorer sleep efficiency at baseline showed greater exercise-induced improvements in episodic memory. CONCLUSIONS: These results suggest that those with poorer sleep may have the greatest exercise-induced cognitive benefits and that baseline sleep behaviours may be an important source of heterogeneity in previous exercise interventions targeting cognitive outcomes.


Subject(s)
Cognition , Memory, Episodic , Humans , Aged , Exercise , Sleep
4.
Gerontology ; 69(2): 201-211, 2023.
Article in English | MEDLINE | ID: mdl-36174542

ABSTRACT

INTRODUCTION: Evidence suggests that maintaining a higher level of cardiorespiratory fitness (CRF) later in life can offer some protection against brain volume loss as we age. By contrast, mild traumatic brain injury (mTBI) could accelerate age-related cortical atrophy. The current study sought to examine whether variations in the CRF level modified the association between mTBI history and brain volumetric measures in a sample of older adults. METHODS: Seventy-nine community-dwelling older adults (mean age 68.7 ± 4.3 years, 54.4% female) were assessed for their mTBI history: 25 participants (32%) reported sustaining at least one lifetime mTBI. Participants also underwent a CRF assessment and magnetic resonance imaging (MRI) to obtain global and region-of-interest volumes. RESULTS: Analysis of covariance, controlling for age, sex, education, and apolipoprotein (APOE) ε4 allele carriage, revealed that participants with a history of mTBI had a significantly larger total mean grey matter volume (582.21 ± 12.46 cm3) in comparison to participants with no mTBI history (571.08 ± 17.21 cm3, p = 0.01 after correction for multiple comparisons). However, no differences between groups based on mTBI history were found for total white matter volume or in any other cortical or subcortical structures examined. A subsequent moderation analysis found that CRF was predominantly non-influential on the association between mTBI history and the MRI-quantified measures of brain volume. CONCLUSION: While unexpected, the findings suggest that a history of mTBI can lead to grey matter alterations in the ageing brain. However, concurrent variations in the CRF level did not influence the differences in brain volume found based on mTBI exposure status.


Subject(s)
Brain Concussion , Cardiorespiratory Fitness , White Matter , Humans , Female , Aged , Male , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Brain/diagnostic imaging , Brain/pathology , Aging , White Matter/pathology , Magnetic Resonance Imaging/methods
5.
Ageing Res Rev ; 68: 101322, 2021 07.
Article in English | MEDLINE | ID: mdl-33737117

ABSTRACT

Mild traumatic brain injury (mTBI) accounts for a large majority of traumatic brain injuries sustained globally each year. Older adults, who are already susceptible to age-related declines to neurocognitive health, appear to be at an increased risk of both sustaining an mTBI and experiencing slower or impaired recovery. There is also growing evidence that mTBI is a potential risk factor for accelerated cognitive decline and neurodegeneration. Lifestyle-based interventions are gaining prominence as a cost-effective means of maintaining cognition and brain health with age. Consequently, inter-individual variations in exercise, sleep, and dietary patterns could influence the trajectory of post-mTBI neurocognitive recovery, particularly in older adults. This review synthesises the current animal and human literature centred on the mechanisms through which lifestyle-related habits and behaviours could influence acute and longer-term neurocognitive functioning following mTBI. Numerous neuroprotective processes which are impacted by lifestyle factors have been established in animal models of TBI. However, the literature is characterised by a lack of translation to human samples and limited appraisal of the interaction between ageing and brain injury. Further research is needed to better establish the therapeutic utility of applying lifestyle-based modifications to improve post-mTBI neurocognitive outcomes in older adults.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Aged , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Diet , Humans , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...