Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 26(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38539688

ABSTRACT

This paper delves into the significance of the tomographic probability density function (pdf) representation of quantum states, shedding light on the special classes of pdfs that can be tomograms. Instead of using wave functions or density operators on Hilbert spaces, tomograms, which are the true pdfs, are used to completely describe the states of quantum systems. Unlike quasi-pdfs, like the Wigner function, tomograms can be analysed using all the tools of classical probability theory for pdf estimation, which can allow a better quality of state reconstruction. This is particularly useful when dealing with non-Gaussian states where the pdfs are multi-mode. The knowledge of the family of distributions plays an important role in the application of both parametric and nonparametric density estimation methods. We show that not all pdfs can play the role of tomograms of quantum states and introduce the conditions that must be fulfilled by pdfs to be "quantum".

2.
Nat Commun ; 15(1): 311, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191453

ABSTRACT

Characterizing the interactions and dynamics of quantum mechanical systems is an essential task in developing quantum technologies. We propose an efficient protocol based on the estimation of the time-derivatives of few qubit observables using polynomial interpolation for characterizing the underlying Hamiltonian dynamics and Markovian noise of a multi-qubit device. For finite range dynamics, our protocol exponentially relaxes the necessary time-resolution of the measurements and quadratically reduces the overall sample complexity compared to previous approaches. Furthermore, we show that our protocol can characterize the dynamics of systems with algebraically decaying interactions. The implementation of the protocol requires only the preparation of product states and single-qubit measurements. Furthermore, we improve a shadow tomography method for quantum channels that is of independent interest and discuss the robustness of the protocol to various errors. This protocol can be used to parallelize the learning of the Hamiltonian, rendering it applicable for the characterization of both current and future quantum devices.

3.
Entropy (Basel) ; 25(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832675

ABSTRACT

We introduce the concept of the almost-companion matrix (ACM) by relaxing the non-derogatory property of the standard companion matrix (CM). That is, we define an ACM as a matrix whose characteristic polynomial coincides with a given monic and generally complex polynomial. The greater flexibility inherent in the ACM concept, compared to CM, allows the construction of ACMs that have convenient matrix structures satisfying desired additional conditions, compatibly with specific properties of the polynomial coefficients. We demonstrate the construction of Hermitian and unitary ACMs starting from appropriate third-degree polynomials, with implications for their use in physical-mathematical problems, such as the parameterization of the Hamiltonian, density, or evolution matrix of a qutrit. We show that the ACM provides a means of identifying the properties of a given polynomial and finding its roots. For example, we describe the ACM-based solution of cubic complex algebraic equations without resorting to the use of the Cardano-Dal Ferro formulas. We also show the necessary and sufficient conditions on the coefficients of a polynomial for it to represent the characteristic polynomial of a unitary ACM. The presented approach can be generalized to complex polynomials of higher degrees.

SELECTION OF CITATIONS
SEARCH DETAIL
...