Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurochem ; 153(3): 334-345, 2020 05.
Article in English | MEDLINE | ID: mdl-31985073

ABSTRACT

Brain endocannabinoids serve as retrograde neurotransmitters, being synthesized in post-synaptic neurons "on demand" and released to bind pre-synaptic cannabinoid receptors and suppress glutamatergic or GABAergic transmission. The most abundant brain endocannabinoid, 2 arachidonoyl glycerol (2-AG), is primarily synthesized by diacylglycerol lipase-α (DGLα), which is activated by poorly understood mechanisms in response to calcium influx following post-synaptic depolarization and/or the activation of Gq -coupled group 1 metabotropic glutamate receptors. However, the impact of other neurotransmitters and their downstream signaling pathways on synaptic 2-AG signaling has not been intensively studied. Here, we found that DGLα activity in membrane fractions from transfected HEK293T cells was significantly increased by in vitro phosphorylation using cyclic AMP-dependent protein kinase (PKA). Moreover, PKA directly phosphorylated DGLα at Ser798 in vitro. Elevation of cAMP levels in HEK293 cells expressing DGLα increased Ser798 phosphorylation, as detected using a phospho-Ser798-specific antibody, and enhanced DGLα activity; this in situ enhancement of DGLα activity was prevented by mutation of Ser798 to Ala. We investigated the impact of PKA on synaptic 2-AG mobilization in mouse striatal slices by manipulating D1-dopamine receptor (D1R) signaling and assessing depolarization-induced suppression of excitation, a DGLα- and 2-AG-dependent form of short-term synaptic depression. The magnitude of depolarization-enhanced suppression of excitation in direct pathway medium spiny neurons was increased by pre-incubation with a D1R agonist, and this enhancement was blocked by post-synaptic inhibition of PKA. Taken together, these findings provide new molecular insights into the complex mechanisms regulating synaptic endocannabinoid signaling.


Subject(s)
Arachidonic Acids/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Lipoprotein Lipase/metabolism , Receptors, Dopamine D1/metabolism , Signal Transduction/physiology , Animals , Brain/drug effects , Brain/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Signal Transduction/drug effects
2.
Mol Pharmacol ; 94(6): 1352-1362, 2018 12.
Article in English | MEDLINE | ID: mdl-30282777

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and metabotropic glutamate receptor 5 (mGlu5) are critical signaling molecules in synaptic plasticity and learning/memory. Here, we demonstrate that mGlu5 is present in CaMKIIα complexes isolated from mouse forebrain. Further in vitro characterization showed that the membrane-proximal region of the C-terminal domain (CTD) of mGlu5a directly interacts with purified Thr286-autophosphorylated (activated) CaMKIIα However, the binding of CaMKIIα to this CTD fragment is reduced by the addition of excess Ca2+/calmodulin or by additional CaMKIIα autophosphorylation at non-Thr286 sites. Furthermore, in vitro binding of CaMKIIα is dependent on a tribasic residue motif Lys-Arg-Arg (KRR) at residues 866-868 of the mGlu5a-CTD, and mutation of this motif decreases the coimmunoprecipitation of CaMKIIα with full-length mGlu5a expressed in heterologous cells by about 50%. The KRR motif is required for two novel functional effects of coexpressing constitutively active CaMKIIα with mGlu5a in heterologous cells. First, cell-surface biotinylation studies showed that CaMKIIα increases the surface expression of mGlu5a Second, using Ca2+ fluorimetry and single-cell Ca2+ imaging, we found that CaMKIIα reduces the initial peak of mGlu5a-mediated Ca2+ mobilization by about 25% while doubling the relative duration of the Ca2+ signal. These findings provide new insights into the physical and functional coupling of these key regulators of postsynaptic signaling.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Calmodulin/metabolism , Cell Line , Cell Membrane/metabolism , Female , HEK293 Cells , Humans , Immunoprecipitation/methods , Male , Mice , Mice, Knockout , Protein Binding/physiology , Signal Transduction
3.
Biol Psychiatry ; 84(4): 304-315, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29458998

ABSTRACT

BACKGROUND: Endocannabinoid signaling plays an important role in regulating synaptic transmission in the striatum, a brain region implicated as a central node of dysfunction in autism spectrum disorder. Deficits in signaling mediated by the endocannabinoid 2-arachidonoylglycerol (2-AG) have been reported in mouse models of autism spectrum disorder, but a causal role for striatal 2-AG deficiency in phenotypes relevant to autism spectrum disorder has not been explored. METHODS: Using conditional knockout mice, we examined the electrophysiological, biochemical, and behavioral effects of 2-AG deficiency by deleting its primary synthetic enzyme, diacylglycerol lipase α (DGLα), from dopamine D1 receptor-expressing or adenosine A2a receptor-expressing medium spiny neurons (MSNs) to determine the role of 2-AG signaling in striatal direct or indirect pathways, respectively. We then used viral-mediated deletion of DGLα to study the effects of 2-AG deficiency in the ventral and dorsal striatum. RESULTS: Targeted deletion of DGLα from direct-pathway MSNs caused deficits in social interaction, excessive grooming, and decreased exploration of a novel environment. In contrast, deletion from indirect-pathway MSNs had no effect on any measure of behavior examined. Loss of 2-AG in direct-pathway MSNs also led to increased glutamatergic drive, which is consistent with a loss of retrograde feedback inhibition. Subregional DGLα deletion from the dorsal striatum produced deficits in social interaction, whereas deletion from the ventral striatum resulted in repetitive grooming. CONCLUSIONS: These data suggest a role for 2-AG deficiency in social deficits and repetitive behavior, and they demonstrate a key role for 2-AG in regulating striatal direct-pathway MSNs.


Subject(s)
Arachidonic Acids/metabolism , Corpus Striatum/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D1/metabolism , Social Behavior , Animals , Arachidonic Acids/deficiency , Autism Spectrum Disorder/metabolism , Endocannabinoids/deficiency , Glycerides/deficiency , Mice , Mice, Knockout , Signal Transduction , Synaptic Transmission
4.
J Biol Chem ; 292(42): 17324-17336, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28916724

ABSTRACT

Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca2+ channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca2+-sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of CaV1 LTCC α1 subunits that is not conserved in CaV2 or CaV3 voltage-gated Ca2+ channel subunits. Mutations in the CaV1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the in vitro interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory.


Subject(s)
Calcium Channels/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Nucleus/metabolism , Hippocampus/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Calcium Channels/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Nucleus/genetics , Female , Learning/physiology , Memory/physiology , Protein Domains , Rats , Rats, Sprague-Dawley
5.
J Neurosci ; 37(38): 9288-9304, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28842414

ABSTRACT

The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function.SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Neurons/metabolism , rho-Associated Kinases/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Cells, Cultured
6.
J Neurosci ; 37(8): 2216-2233, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28130356

ABSTRACT

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Subject(s)
Autism Spectrum Disorder , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Dendrites/metabolism , Mutation/genetics , Synaptic Transmission/genetics , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Cells, Cultured , Cycloheximide/pharmacology , Disease Models, Animal , Embryo, Mammalian , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Exploratory Behavior/physiology , Female , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Sialoglycoproteins/genetics , Sialoglycoproteins/metabolism
7.
Am J Physiol Heart Circ Physiol ; 307(12): H1745-53, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25326535

ABSTRACT

Cytomegalovirus (CMV) infects a majority of the population worldwide. It has been implicated in cardiovascular disease, induces microvascular dysfunction, and synergizes with hypercholesterolemia to promote leukocyte and platelet recruitment in venules. Although platelets and platelet-associated P-selectin contribute to cardiovascular disease inflammation, their role in CMV-induced vascular responses is unknown. We assessed the role of platelets in CMV-induced microvascular dysfunction by depleting platelets and developing bone marrow chimeric mice deficient in platelet P-selectin. Wild-type and chimeric mice received mock or murine (m)CMV intraperitoneally. Five weeks later, some mice were switched to a high-cholesterol diet (HC) to investigate the synergism between mCMV and HC. Arteriolar vasodilation and recruitment of leukocytes and donor platelets in venules were measured at 11wk. mCMV with or without HC caused significant endothelial dysfunction in arterioles. Platelet depletion restored normal vasodilation in mCMV-HC but not mCMV-ND mice, whereas protection was seen in both groups for platelet P-selectin chimeras. Only mCMV + HC elevated leukocyte and platelet recruitment in venules. Leukocyte adhesion was reduced to mock levels by acute platelet depletion but was only partially decreased in platelet P-selectin chimeras. Platelets from mCMV-HC mice and, to a lesser extent, mCMV-ND but not mock-HC mice showed significant adhesion in mCMV-HC recipients. Our findings implicate a role for platelets, acting through P-selectin, in CMV-induced arteriolar dysfunction and suggest that the addition of HC leads to a platelet-dependent, inflammatory infiltrate that is only partly platelet P-selectin dependent. CMV appeared to have a stronger activating influence than HC on platelets and may represent an additional therapeutic target in vulnerable patients.


Subject(s)
Blood Platelets/physiology , Cytomegalovirus Infections/physiopathology , Microvessels/physiopathology , P-Selectin/metabolism , Vasodilation , Animals , Blood Platelets/metabolism , Cell Adhesion , Cholesterol/pharmacology , Cytomegalovirus Infections/metabolism , Diet, High-Fat , Leukocytes/physiology , Mice , Mice, Inbred C57BL , Microvessels/drug effects , Microvessels/virology , Muromegalovirus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL