Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Article in English | MEDLINE | ID: mdl-38830989

ABSTRACT

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

2.
Commun Biol ; 6(1): 1199, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001305

ABSTRACT

Where sufficiently large genome-wide association study (GWAS) samples are not currently available or feasible, methods that leverage increasing knowledge of the biological function of variants may illuminate discoveries without increasing sample size. We comprehensively evaluated 17 functional weighting methods for identifying novel associations. We assessed the performance of these methods using published results from multiple GWAS waves across each of five complex traits. Although no method achieved both high sensitivity and positive predictive value (PPV) for any trait, a subset of methods utilizing pleiotropy and expression quantitative trait loci nominated variants with high PPV (>75%) for multiple traits. Application of functionally weighting methods to enhance GWAS power for locus discovery is unlikely to circumvent the need for larger sample sizes in truly underpowered GWAS, but these results suggest that applying functional weighting to GWAS can accurately nominate additional novel loci from available samples for follow-up studies.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Predictive Value of Tests , Phenotype , Quantitative Trait Loci
3.
Mol Psychiatry ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935791

ABSTRACT

Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 [Formula: see text]: cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.

4.
medRxiv ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37790540

ABSTRACT

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

5.
Sci Rep ; 12(1): 16873, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207451

ABSTRACT

Opioid addiction (OA) is moderately heritable, yet only rs1799971, the A118G variant in OPRM1, has been identified as a genome-wide significant association with OA and independently replicated. We applied genomic structural equation modeling to conduct a GWAS of the new Genetics of Opioid Addiction Consortium (GENOA) data together with published studies (Psychiatric Genomics Consortium, Million Veteran Program, and Partners Health), comprising 23,367 cases and effective sample size of 88,114 individuals of European ancestry. Genetic correlations among the various OA phenotypes were uniformly high (rg > 0.9). We observed the strongest evidence to date for OPRM1: lead SNP rs9478500 (p = 2.56 × 10-9). Gene-based analyses identified novel genome-wide significant associations with PPP6C and FURIN. Variants within these loci appear to be pleiotropic for addiction and related traits.


Subject(s)
Genome-Wide Association Study , Opioid-Related Disorders , Furin/genetics , Genetic Predisposition to Disease , Humans , Opioid-Related Disorders/genetics , Phenotype , Polymorphism, Single Nucleotide , Receptors, Opioid, mu/genetics
6.
Mol Psychiatry ; 27(11): 4633-4641, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36195638

ABSTRACT

Substance use disorders (SUDs) incur serious social and personal costs. The risk for SUDs is complex, with risk factors ranging from social conditions to individual genetic variation. We examined whether models that include a clinical/environmental risk index (CERI) and polygenic scores (PGS) are able to identify individuals at increased risk of SUD in young adulthood across four longitudinal cohorts for a combined sample of N = 15,134. Our analyses included participants of European (NEUR = 12,659) and African (NAFR = 2475) ancestries. SUD outcomes included: (1) alcohol dependence, (2) nicotine dependence; (3) drug dependence, and (4) any substance dependence. In the models containing the PGS and CERI, the CERI was associated with all three outcomes (ORs = 01.37-1.67). PGS for problematic alcohol use, externalizing, and smoking quantity were associated with alcohol dependence, drug dependence, and nicotine dependence, respectively (OR = 1.11-1.33). PGS for problematic alcohol use and externalizing were also associated with any substance dependence (ORs = 1.09-1.18). The full model explained 6-13% of the variance in SUDs. Those in the top 10% of CERI and PGS had relative risk ratios of 3.86-8.04 for each SUD relative to the bottom 90%. Overall, the combined measures of clinical, environmental, and genetic risk demonstrated modest ability to distinguish between affected and unaffected individuals in young adulthood. PGS were significant but added little in addition to the clinical/environmental risk index. Results from our analysis demonstrate there is still considerable work to be done before tools such as these are ready for clinical applications.


Subject(s)
Alcoholism , Substance-Related Disorders , Tobacco Use Disorder , Humans , Young Adult , Adult , Tobacco Use Disorder/genetics , Alcoholism/genetics , Substance-Related Disorders/genetics , Risk Factors , Alcohol Drinking
8.
Mol Psychiatry ; 27(7): 3085-3094, 2022 07.
Article in English | MEDLINE | ID: mdl-35422469

ABSTRACT

Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.


Subject(s)
Behavior, Addictive , Cigarette Smoking , Behavior, Addictive/genetics , Chromatin , Ethanol , Genome-Wide Association Study , Phenotype
9.
Nat Commun ; 11(1): 5562, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144568

ABSTRACT

Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N = 33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (rg = 0.40-1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking.


Subject(s)
Genetic Predisposition to Disease , Quantitative Trait, Heritable , Tobacco Use Disorder/genetics , Genetic Loci , Genome-Wide Association Study , Humans , Inheritance Patterns/genetics , Linkage Disequilibrium/genetics , Meta-Analysis as Topic , Molecular Sequence Annotation , Phenotype , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...