Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 185: 116199, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32726717

ABSTRACT

The catalytic hydrogel membrane reactor (CHMR) is a promising new technology for hydrogenation of aqueous contaminants in drinking water. It offers numerous benefits over conventional three-phase reactors, including immobilization of nano-catalysts, high reactivity, and control over the hydrogen (H2) supply concentration. In this study, a computational model of the CHMR was developed using AQUASIM and calibrated with 32 experimental datasets for a nitrite (NO2-)-reducing CHMR using palladium (Pd) nano-catalysts (~4.6 nm). The model was then used to identify key factors impacting the behavior of the CHMR, including hydrogel catalyst density, H2 supply pressure, influent and bulk NO2- concentrations, and hydrogel thickness. Based on the model calibration, the reaction rate constants for the NO2- steady-state adsorption Hinshelwood reaction equation, k1 and k2, were 0.0039 m3 mole-Pd-1 s-1 and 0.027 (mole-H2 m3)1/2 mole-Pd-1 s-1, respectively. The reactant flux, which is the overall NO2- removal rate for the CHMR, is affected by the NO2- reduction rate at each catalyst site, which is in turn controlled by the available NO2- and H2 concentrations that are regulated by their mass transport behavior. Reactant transport in the CHMR is counter-diffusional. So for thick hydrogels, the concurrent concentrations of NO2- and H2 are limiting in the middle region along the x-y plane of the hydrogel, which results in a low overall NO2- removal rate (i.e., flux). Thinner hydrogels provide higher concurrent reactant concentrations throughout the hydrogel, resulting in higher fluxes. However, if the hydrogel is too thin, the flux becomes limited by the amount of Pd that can be loaded, and unused H2 can diffuse into the bulk and promote biofilm growth. The hydrogel thickness that maximized the NO2- flux ranged between 30 and 150 µm for the conditions tested. The computational model is the first to describe CHMR behavior, and it is an important tool for the further development of the CHMR. It also can be adapted to assess CHMR behavior for other contaminants or catalysts or used for other types of interfacial catalytic membrane reactors.


Subject(s)
Hydrogels , Nitrites , Catalysis , Hydrogen , Palladium
2.
Water Res ; 174: 115593, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32086133

ABSTRACT

The catalytic hydrogel membrane reactor (CHMR) is an interfacial membrane process that uses nano-sized catalysts for the hydrogenation of oxidized contaminants in drinking water. In this study, the CHMR was operated as a continuous-flow reactor using nitrite (NO2-) as a model contaminant and palladium (Pd) as a model catalyst. Using the overall bulk reaction rate for NO2- reduction as a metric for catalytic activity, we evaluated the effect of the hydrogen gas (H2) delivery method to the CHMR, the initial H2 and NO2- concentrations, Pd density in the hydrogel, and the presence of Pd-deactivating species. The chemical stability of the catalytic hydrogel was evaluated in the presence of aqueous cations (H+, Na+, Ca2+) and a mixture of ions in a hard groundwater. Delivering H2 to the CHMR lumens using a vented operation mode, where the reactor is sealed and the lumens are periodically flushed to the atmosphere, allowed for a combination of a high H2 consumption efficiency and catalytic activity. The overall reaction rate of NO2- was dependent on relative concentrations of H2 and NO2- at catalytic sites, which was governed by both the chemical reaction and mass transport rates. The intrinsic catalytic reaction rate was combined with a counter-diffusional mass transport component in a 1-D computational model to describe the CHMR. Common Pd-deactivating species [sulfite, bisulfide, natural organic matter] hindered the reaction rate, but the hydrogel afforded some protection from deactivation compared to a batch suspension. No chemical degradation of the hydrogel structure was observed for a model water (pH > 4, Na+, Ca2+) and a hard groundwater after 21 days of exposure, attesting to its stability under natural water conditions.


Subject(s)
Hydrogels , Nitrites , Catalysis , Hydrogenation , Oxidation-Reduction , Palladium
3.
RSC Adv ; 10(16): 9324-9334, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-35497240

ABSTRACT

Two-dimensional molybdenum disulfide (MoS2) is emerging as a catalyst for energy and environmental applications. Recent studies have suggested the stability of MoS2 is questionable when exposed to oxidizing conditions found in water and air. In this study, the aqueous stability of 2H- and 1T-MoS2 and 2H-MoS2 protected with a carbon shell was evaluated in the presence of model oxidants (O2, NO2 -, BrO3 -). The MoS2 electrocatalytic performance and stability was characterized using linear sweep voltammetry and chronoamperometry. In the presence of dissolved oxygen (DO) only, 2H- and 1T-MoS2 were relatively stable, with SO4 2- formation of only 2.5% and 3.1%, respectively. The presence of NO2 - resulted in drastically different results, with SO4 2- formations of 11% and 14% for 2H- and 1T-MoS2, respectively. When NO2 - was present without DO, the 2H- and 1T-MoS2 remained relatively stable with SO4 2- formations of only 4.2% and 3.3%, respectively. Similar results were observed when BrO3 - was used as an oxidant. Collectively, these results indicate that the oxidation of 2H- and 1T-MoS2 can be severe in the presence of these aqueous oxidants but that DO is also required. To investigate the ability of a capping agent to protect the MoS2 from oxidation, a carbon shell was added to 2H-MoS2. In a batch suspension in the presence of DO and NO2 -, the 2H-MoS2 with the carbon shell exhibited good stability with no oxidation observed. The activity of 2H-MoS2 electrodes was then evaluated for the hydrogen evolution reaction by a Tafel analysis. The carbon shell improved the activity of 2H-MoS2 with a decrease in the Tafel slope from 451 to 371 mV dec-1. The electrode stability, characterized by chronopotentiometry, was also enhanced for the 2H-MoS2 coated with a carbon shell, with no marked degradation in current density observed over the reaction period. Because of the instability exhibited by unprotected MoS2, it will only be a useful catalyst if measures are taken to protect the surface from oxidation. Further, given the propensity of MoS2 to undergo oxidation in aqueous solutions, caution should be used when describing it as a true catalyst for reduction reactions (e.g., H2 evolution), unless proven otherwise.

4.
Environ Sci Technol ; 53(11): 6492-6500, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31083982

ABSTRACT

Heterogeneous hydrogenation catalysis is a promising approach for treating oxidized contaminants in drinking water, but scale-up has been limited by the challenge of immobilization of the catalyst while maintaining efficient mass transport and reaction kinetics. We describe a new process that addresses this issue: the catalytic hydrogel membrane (CHM) reactor. The CHM consists of a gas-permeable hollow-fiber membrane coated with an alginate-based hydrogel containing catalyst nanoparticles. The CHM benefits from counter-diffusional transport within the hydrogel, where H2 diffuses from the interior of the membrane and contaminant species (e.g., NO2-, O2) diffuse from the bulk aqueous solution. The reduction of O2 and NO2- were investigated using CHMs with varying palladium catalyst densities, and mass transport of reactive species in the catalytic hydrogel was characterized using microsensors. The thickness of the "reactive zone" within the hydrogel affected the reaction rate and byproduct selectivity, and it was dependent on catalyst density. In a continuously mixed flow reactor test using groundwater, the CHM activity was stable for a 3 day period. Outcomes of this study illustrate the potential of the CHM as a scalable process in the treatment of aqueous contaminants.


Subject(s)
Hydrogels , Palladium , Catalysis , Hydrogenation , Oxidation-Reduction
5.
Environ Sci Technol ; 52(15): 8638-8648, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29901992

ABSTRACT

Cyclic voltammetry (CV) and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to investigate the effect of major urine compounds on the electro-oxidation activity of urea using a nickel cobaltite (NiCo2O4 ) catalyst. As a substrate, carbon paper exhibited better benchmark potential and current values compared with stainless steel and fluorine-doped tin oxide glass, which was attributed to its greater active surface area per electrode geometric area. CV analysis of synthetic urine showed that phosphate, creatinine, and gelatin (i.e., proteins) had the greatest negative effect on the electro-oxidation activity of urea, with decreases in peak current up to 80% compared to that of a urea-only solution. Further investigation of the binding mechanisms of the deleterious compounds using in situ ATR-FTIR spectroscopy revealed that urea and phosphate weakly bind to NiCo2O4 through hydrogen bonding or long-range forces, whereas creatinine interacts strongly, forming deactivating inner-sphere complexes. Phosphate is presumed to disrupt the interaction between urea and NiCo2O4 by serving as a hydrogen-bond acceptor in place of catalyst sites. The weak binding of urea supports the hypothesis that it is oxidized through an indirect electron transfer. Outcomes of this study contribute to the development of electrolytic systems for treating source-separated urine.


Subject(s)
Nickel , Urea , Minerals , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis
6.
Water Res ; 104: 11-19, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27497627

ABSTRACT

Regulated oxidized pollutants in drinking water can have significant health effects, resulting in the need for ancillary treatment processes. Oxoanions (e.g., nitrate) are one important class of oxidized inorganic ions. Ion exchange and reverse osmosis are often used treatment processes for oxoanions, but these separation processes leave behind a concentrated waste product that still requires treatment or disposal. Photocatalysis has emerged as a sustainable treatment technology capable of catalytically reducing oxoanions directly to innocuous byproducts. Compared with the large volume of knowledge available for photocatalytic oxidation, very little knowledge exists regarding photocatalytic reduction of oxoanion pollutants. This study investigates the reduction of various oxoanions of concern in drinking water (nitrate, nitrite, bromate, perchlorate, chlorate, chlorite, chromate) using a commercial titanium dioxide photocatalyst and a polychromatic light source. Results showed that oxoanions were readily reduced under acidic conditions in the presence of formate, which served as a hole scavenger, with the first-order rate decreasing as follows: bromate > nitrite > chlorate > nitrate > dichromate > perchlorate, corresponding to rate constants of 0.33, 0.080, 0.052, 0.0074, 0.0041, and 0 cm2/photons × 1018, respectively. Only bromate and nitrite were reduced at neutral pH, with substantially lower rate constants of 0.034 and 0.0021 cm2/photons × 1018, respectively. No direct relationship between oxoanion physicochemical properties, including electronegativity of central atom, internal bond strength, and polarizability was discovered. However, observations presented herein suggest the presence of kinetic barriers unique to each oxoanion and provides a framework for investigating photocatalytic reduction mechanisms of oxoanions in order to design better photocatalysts and optimize treatment.


Subject(s)
Drinking Water , Titanium/chemistry , Bromates/chemistry , Catalysis , Nitrates/chemistry , Nitrites/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...