Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 42(2): 187-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38287161
2.
Hum Gene Ther ; 34(9-10): 388-403, 2023 05.
Article in English | MEDLINE | ID: mdl-37119122

ABSTRACT

Muscular dystrophies (MDs) comprise a diverse group of inherited disorders characterized by progressive muscle loss and weakness. Given the genetic etiology underlying MDs, researchers have explored the potential of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing as a therapeutic intervention, resulting in significant advances. Here, we review recent progress on the use of CRISPR/Cas9 genome editing as a potential therapy for MDs. Significant strides have been made in this realm, made possible through innovative techniques such as precision genetic editing by modified forms of CRISPR/Cas9. These approaches have shown varying degrees of success in animal models of MD, including Duchenne MD, congenital muscular dystrophy type 1A, and myotonic dystrophy type 1. Even so, there are several challenges facing the development of CRISPR/Cas9-based MD therapies, including the targeting of satellite cells, improved editing efficiency in skeletal and cardiac muscle tissue, delivery vehicle enhancements, and the host immunogenic response. Although more work is needed to advance CRISPR/Cas9 genome editing past the preclinical stages, its therapeutic potential for MD is extremely promising and justifies concentrated efforts to move into clinical trials.


Subject(s)
Gene Editing , Muscular Dystrophy, Duchenne , Animals , Gene Editing/methods , CRISPR-Cas Systems , Muscular Dystrophy, Duchenne/genetics , Genetic Therapy/methods , Dystrophin/genetics
3.
STAR Protoc ; 4(1): 101933, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36574341

ABSTRACT

Here, we describe a protocol for purifying functional clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) from Staphylococcus aureus within 24 h and over 90% purity. SaCas9 purification begins with immobilized metal affinity chromatography, followed by cation exchange chromatography, and ended with centrifugal concentrators. The simplicity, cost-effectiveness, and reproducibility of such protocols will enable general labs to produce a sizable amount of Cas9 proteins, further accelerating CRISPR research.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Staphylococcus aureus/genetics , Cost-Benefit Analysis , Reproducibility of Results
4.
Front Reprod Health ; 3: 726936, 2021.
Article in English | MEDLINE | ID: mdl-36304004

ABSTRACT

Endometriosis (EM) is characterized by the growth of endometrium-like tissue outside the uterus, leading to chronic inflammation and pelvic pain. Lesion proliferation, vascularization, and associated inflammation are the hallmark features of EM lesions. The legalization of recreational cannabinoids has garnered interest in the patient community and is contributing to a greater incidence of self medication; however, it remains unknown if cannabinoids possess marked disease-modifying properties. In this study, we assess the effects of synthetic cannabinoid, WIN 55212-2 (WIN 55), in EM-representative in vitro and in vivo syngeneic mouse models. WIN 55 reduced proliferation and angiogenesis in vitro, via MAPK/Akt-mediated apoptosis. These findings were corroborated in a mouse model of EM, where we found reduced TRPV1 expression in the dorsal root ganglia of the EM mouse model exposed to WIN 55, suggesting reduced signaling of pain stimuli. Ultimately, these pieces of evidence support the use of cannabinoid receptor agonists as a potential therapeutic intervention for EM associated pain and inflammation.

5.
Front Immunol ; 11: 108, 2020.
Article in English | MEDLINE | ID: mdl-32117261

ABSTRACT

Endometriosis is a debilitating gynecological disease characterized by the extrauterine presence of endometrial-like tissues located on the peritoneal membrane and organs of the pelvic cavity. Notably, dysfunctional immune activation in women with endometriosis could also contribute to the development of disease. In particular, alternatively activated (M2) peritoneal macrophages are shown to aid peritoneal lesion development by promoting remodeling of extracellular matrix and neovascularization of lesions. However, the stimuli responsible for polarizing M2 macrophages in endometriosis remain elusive. Interleukin-17A (IL-17A) can induce M2 macrophage polarization in other disease models and IL-17A is elevated in the plasma and endometriotic lesions of women with endometriosis. In this study, we investigated whether IL-17A could induce macrophage recruitment and M2 polarization, while promoting endometriotic lesion growth through enhanced vascularization. By utilizing a co-culture of macrophage-like THP-1 cells with an endometriotic epithelial cell line, our in vitro results suggest that IL-17A indirectly induces M2 markers CCL17 and CD206 by interacting with endometriotic epithelial cells. Further, in a syngeneic mouse model of endometriosis, IL-17A treatment increased macrophages in the peritoneum, which were also M2 in phenotype. However, IL-17A treatment did not augment proliferation or vascularization of the lesion in the study time frame. These findings suggest that IL-17A may be a stimulus inducing the pathogenic polarization of macrophages into the M2 phenotype by first acting on the endometriotic lesion itself.


Subject(s)
Endometriosis/immunology , Interleukin-17/pharmacology , Macrophage Activation/drug effects , Macrophages, Peritoneal/drug effects , Recombinant Proteins/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Endometriosis/genetics , Endometriosis/metabolism , Female , Gene Expression/drug effects , Humans , Interleukin-17/genetics , Macrophage Activation/immunology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/metabolism , THP-1 Cells
6.
FASEB J ; 34(1): 1558-1575, 2020 01.
Article in English | MEDLINE | ID: mdl-31914688

ABSTRACT

Endometriosis is a chronic inflammatory, gynecological disease characterized by the presence of endometrial-like tissue lesions outside of the uterus. Neutrophils are elevated in the systemic circulation and peritoneal fluid of endometriosis patients; however, whether and how neutrophils contribute to endometriosis pathophysiology remain poorly understood. With emerging roles for neutrophils in chronic and sterile inflammatory conditions, we sought to provide in-depth characterization of neutrophil involvement in endometriosis. We demonstrate that neutrophils reside within patient endometriotic lesions and that patient lesions possess a microenvironment that may influence neutrophil recruitment and function. We also provide the first evidence that systemic circulating neutrophils from endometriosis patients display distinct transcriptomic differences compared neutrophils from healthy control subjects. Time course characterization of our syngeneic, immunocompetent mouse model of endometriosis revealed that neutrophils are rapidly recruited to the peritoneal environment early after endometriotic lesion establishment and remain present in murine lesions long term. In vivo neutrophil depletion altered the systemic and peritoneal immune microenvironment of mice with endometriosis as demonstrated by changes in pro-inflammatory and angiogenic mediators. Taken together, these findings highlight a novel role for neutrophils in early events such as angiogenesis and modulation of the local inflammatory environment associated with endometriosis pathogenesis.


Subject(s)
Endometriosis/pathology , Endometrium/pathology , Neutrophils/pathology , Animals , Disease Models, Animal , Female , Humans , Inflammation/pathology , Mice , Neovascularization, Pathologic/pathology , Neutrophil Infiltration/physiology , Peritoneum/pathology
7.
Nature ; 572(7767): 125-130, 2019 08.
Article in English | MEDLINE | ID: mdl-31341277

ABSTRACT

Neuromuscular disorders are often caused by heterogeneous mutations in large, structurally complex genes. Targeting compensatory modifier genes could be beneficial to improve disease phenotypes. Here we report a mutation-independent strategy to upregulate the expression of a disease-modifying gene associated with congenital muscular dystrophy type 1A (MDC1A) using the CRISPR activation system in mice. MDC1A is caused by mutations in LAMA2 that lead to nonfunctional laminin-α2, which compromises the stability of muscle fibres and the myelination of peripheral nerves. Transgenic overexpression of Lama1, which encodes a structurally similar protein called laminin-α1, ameliorates muscle wasting and paralysis in mouse models of MDC1A, demonstrating its importance as a compensatory modifier of the disease1. However, postnatal upregulation of Lama1 is hampered by its large size, which exceeds the packaging capacity of vehicles that are clinically relevant for gene therapy. We modulate expression of Lama1 in the dy2j/dy2j mouse model of MDC1A using an adeno-associated virus (AAV9) carrying a catalytically inactive Cas9 (dCas9), VP64 transactivators and single-guide RNAs that target the Lama1 promoter. When pre-symptomatic mice were treated, Lama1 was upregulated in skeletal muscles and peripheral nerves, which prevented muscle fibrosis and paralysis. However, for many disorders it is important to investigate the therapeutic window and reversibility of symptoms. In muscular dystrophies, it has been hypothesized that fibrotic changes in skeletal muscle are irreversible. However, we show that dystrophic features and disease progression were improved and reversed when the treatment was initiated in symptomatic dy2j/dy2j mice with apparent hindlimb paralysis and muscle fibrosis. Collectively, our data demonstrate the feasibility and therapeutic benefit of CRISPR-dCas9-mediated upregulation of Lama1, which may enable mutation-independent treatment for all patients with MDC1A. This approach has a broad applicability to a variety of disease-modifying genes and could serve as a therapeutic strategy for many inherited and acquired diseases.


Subject(s)
Genes, Modifier/genetics , Genetic Therapy/methods , Laminin/genetics , Laminin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/therapy , Up-Regulation , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Disease Progression , Female , Fibrosis/metabolism , Fibrosis/pathology , Gene Editing , Male , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation
8.
Trends Mol Med ; 24(9): 748-762, 2018 09.
Article in English | MEDLINE | ID: mdl-30054239

ABSTRACT

Endometriosis is a chronic, inflammatory, estrogen-dependent disease characterized by the growth of endometrial tissue outside of the uterine cavity. Although the etiology of endometriosis remains elusive, immunological dysfunction has been proposed as a critical facilitator of ectopic lesion growth following retrograde menstruation of endometrial debris. However, it is not clear whether this immune dysfunction is a cause or consequence of endometriosis. Thus, here we provide in-depth insights into our current understanding of the immunopathophysiology of endometriosis and highlight challenges and opportunities for future research. With the explosion of successful immune-based therapies targeting various chronic inflammatory conditions, it is crucial to determine whether immune dysfunction can be therapeutically targeted in endometriosis.


Subject(s)
Endometriosis/immunology , Endometriosis/pathology , Adaptive Immunity , Animals , Cytokines/analysis , Cytokines/immunology , Endometriosis/complications , Endometrium/immunology , Endometrium/pathology , Female , Humans , Immunity, Innate , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...