Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 136: 155291, 2022 11.
Article in English | MEDLINE | ID: mdl-35981632

ABSTRACT

BACKGROUND: Cholesterol is central to pancreatic ß-cell physiology and alterations of its homeostasis contribute to ß-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts ß-cells function. METHODS: Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal ß-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS: Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable ß-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated­calcium dynamics were detected in PCSK9-deficient ß-cells. Mechanistically, pancreatic PCSK9 silencing impacts ß-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS: These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the ß-cell secretory pathway, via modulation of cholesterol homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Proprotein Convertase 9 , Animals , Blood Glucose/metabolism , Calcium/metabolism , Cholesterol , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Lipoproteins, LDL/metabolism , Mice , Mice, Knockout , Pancreas/metabolism , Proinsulin/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , SNARE Proteins/metabolism , Secretory Pathway , Serine Endopeptidases/genetics , Subtilisins/metabolism
2.
Acta Neuropathol ; 144(1): 81-106, 2022 07.
Article in English | MEDLINE | ID: mdl-35596783

ABSTRACT

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson's disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease , Amino Acid Transport System X-AG , Animals , Glutamates , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mutation , Neurons/pathology , Parkinson Disease/pathology
3.
Cells ; 10(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34831062

ABSTRACT

Iron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release. Iron cellular content must be finely tuned to ensure the normal supply but also to prevent overloading. Indeed, due to the high reactivity with oxygen and the formation of free radicals, iron excess may cause oxidative damage of cells that are extremely vulnerable to this condition because the normal elevated ROS production and the paucity in antioxidant enzyme activities. The aim of the present review is to provide insights into the mechanisms responsible for iron homeostasis in beta-cells, describing how alteration of these processes has been related to beta-cell damage and failure. Defects in iron-storing or -chaperoning proteins have been detected in diabetic conditions; therefore, the control of iron metabolism in these cells deserves further investigation as a promising target for the development of new disease treatments.


Subject(s)
Insulin-Secreting Cells/metabolism , Iron/metabolism , Animals , Diabetes Mellitus/metabolism , Homeostasis , Humans , Models, Biological
4.
Biomedicines ; 8(12)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302345

ABSTRACT

Substantial epidemiological evidence indicates that a diet rich in polyphenols protects against developing type 2 diabetes. The phenylethanoid glycoside verbascoside/acteoside, a widespread polyphenolic plant compound, has several biological properties including strong antioxidant, anti-inflammatory and neuroprotective activities. The aim of this research was to test the possible effects of verbascoside on pancreatic ß-cells, a target never tested before. Mouse and human ß-cells were incubated with verbascoside (0.8-16 µM) for up to five days and a combination of biochemical and imaging techniques were used to assess the ß-cell survival and function under normal or endoplasmic reticulum (ER)-stress inducing conditions. We found a dose-dependent protective effect of verbascoside against oxidative stress in clonal and human ß-cells. Mechanistic studies revealed that the polyphenol protects ß-cells against ER-stress mediated dysfunctions, modulating the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response and promoting mitochondrial dynamics. As a result, increased viability, mitochondrial function and insulin content were detected in these cells. These studies provide the evidence that verbascoside boosts the ability of ß-cells to cope with ER-stress, an important contributor of ß-cell dysfunction and failure in diabetic conditions and support the therapeutic potential of verbascoside in diabetes.

5.
Front Cell Dev Biol ; 8: 508, 2020.
Article in English | MEDLINE | ID: mdl-32850772

ABSTRACT

Recently, using cluster-assembled zirconia substrates with tailored roughness produced by supersonic cluster beam deposition, we demonstrated that ß cells can sense nanoscale features of the substrate and can translate these stimuli into a mechanotransductive pathway capable of preserveing ß-cell differentiation and function in vitro in long-term cultures of human islets. Using the same proteomic approach, we now focused on the mitochondrial fraction of ßTC3 cells grown on the same zirconia substrates and characterized the morphological and proteomic modifications induced by the nanostructure. The results suggest that, in ßTC3 cells, mitochondria are perturbed by the nanotopography and activate a program involving metabolism modification and modulation of their interplay with other organelles. Data were confirmed in INS1E, a different ß-cell model. The change induced by the nanostructure can be pro-survival and prime mitochondria for a metabolic switch to match the new cell needs.

6.
Sci Rep ; 10(1): 3799, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123243

ABSTRACT

The LRRK2 protein consists of multiple functional domains, including protein-binding domains at its N and C-terminus. Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) have been linked to familial and sporadic Parkinson's disease (PD). We have recently described a novel variant falling within the N-terminal armadillo repeats, E193K. Herein, our aim is to investigate the functional impact of LRRK2 N-terminal domain and the E193K variant on vesicle trafficking. By combining Total Internal Reflection Fluorescence (TIRF) microscopy and a synaptopHluorin assay, we found that expression of a construct lacking the N-terminal domain increases the frequency and amplitude of spontaneous synaptic events. Complementary biochemical approaches showed that the E193K variant alters the binding properties of LRRK2, decreases LRRK2 binding to synaptic vesicles, and promotes vesicle fusion. Our results confirm the physiological and pathological relevance of the nature of the LRRK2-associated macro-molecular complex solidifying the idea that different pathological mutations critically alter the scaffolding function of LRRK2 resulting in a perturbation of the vesicular trafficking as a common denominator.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Synaptic Vesicles/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation, Missense , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Domains , Protein Transport , Synaptic Vesicles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...