Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 21(17): 4976-9, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21669532

ABSTRACT

Proteomic studies have identified a plethora of lysine acetylated proteins in eukaryotes and bacteria. Determining the individual lysine acetyltransferases responsible for each protein acetylation mark is crucial for elucidating the underlying regulatory mechanisms, but has been challenging due to limited biochemical methods. Here, we describe the application of a bioorthogonal chemical proteomics method to profile and identify substrates of individual lysine acetyltransferases. Addition of 4-pentynoyl-coenzyme A, an alkynyl chemical reporter for protein acetylation, to cell extracts, together with purified lysine acetyltransferase p300, enabled the fluorescent profiling and identification of protein substrates via Cu(I)-catalyzed alkyne-azide cycloaddition. We identified several known protein substrates of the acetyltransferase p300 as well as the lysine residues that were modified. Interestingly, several new candidate p300 substrates and their sites of acetylation were also discovered using this approach. Our results demonstrate that bioorthogonal chemical proteomics allows the rapid substrate identification of individual protein acetyltransferases in vitro.


Subject(s)
Acetyltransferases/metabolism , Coenzyme A/metabolism , Lysine/metabolism , Proteomics , p300-CBP Transcription Factors/metabolism , Chromatography, Liquid , Coenzyme A/chemistry , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...