Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Type of study
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-429917

ABSTRACT

Controlling and monitoring the still ongoing SARS-CoV-2 pandemic regarding geographical distributions, evolution and emergence of new mutations of the SARS-CoV-2 virus is only possible due to continuous next-generation sequencing (NGS) and worldwide sequence data sharing. Efficient sequencing strategies enabling the retrieval of the maximum number of high quality, full-length genomes are hence indispensable. Here, we describe for the first time a combined approach of digital droplet PCR (ddPCR) and NGS to evaluate five commercially available sequence capture panels targeting SARS-CoV-2. In doing so, we were not only able to determine the most sensitive and specific capture panel, but to discriminate their mode of action and number of read pairs needed to recover a high quality full length genome. Thereby, we are providing essential information for all sequencing laboratories worldwide striving for maximizing the sequencing output and simultaneously minimizing time, costs and sequencing resources.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20165639

ABSTRACT

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occuring in the Wuhan region, China, in December 2019. From China the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on the 2nd of March 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequence data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening of 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates from which 21 whole genome sequences were generated. Our analysis shows that both, the early A (19B) and the fast evolving B (20A/C) clade, are present in Mali indicating multiple and independent introductions of the SARS-CoV-2 to the Sahel region.

SELECTION OF CITATIONS
SEARCH DETAIL
...