Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21258477

ABSTRACT

Optimal vaccination and immunotherapy against coronavirus disease COVID-19 relies on the in-depth comprehension of immune responses determining the individual susceptibility to be infected by SARS-CoV-2 and to develop severe disease. We characterized the polarity and specificity of circulating SARS-CoV-2-specific T cell responses against whole virus lysates or 186 unique peptides derived from the SARS-CoV-2 or SARS-CoV-1 ORFeome on 296 cancer-bearing and 86 cancer-free individuals who were either from the pre-COVID-19 era (67 individuals) or contemporary COVID-19-free (237 individuals) or who developed COVID-19 (78 individuals) in 2020/21. The ratio between the prototypic T helper 1 (TH1) cytokine, interleukin-2, and the prototypic T helper 2 (TH2) cytokine, interleukin-5 (IL-5), released from SARS-CoV-2-specific memory T cells measured in early 2020, among SARS-CoV-2-negative persons, was associated with the susceptibility of these individuals to develop PCR-detectable SARS-CoV-2 infection in late 2020 or 2021. Of note, T cells from individuals who recovered after SARS-CoV-2 re-infection spontaneously produced elevated levels of IL-5 and secreted the immunosuppressive TH2 cytokine interleukin-10 in response to SARS-CoV-2 lysate, suggesting that TH2 responses to SARS-CoV-2 are inadequate. Moreover, individuals susceptible to SARS-CoV-2 infection exhibited a deficit in the TH1 peptide repertoire affecting the highly mutated receptor binding domain (RBD) amino acids (331-525) of the spike protein. Finally, current vaccines successfully triggered anti-RBD specific TH1 responses in 88% healthy subjects that were negative prior to immunization. These findings indicate that COVID-19 protection relies on TH1 cell immunity against SARS-CoV-2 S1-RBD which in turn likely drives the phylogenetic escape of the virus. The next generation of COVID-19 vaccines should elicit high-avidity TH1 (rather than TH2)-like T cell responses against the RBD domain of current and emerging viral variants.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21250357

ABSTRACT

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and non-cancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer, 89% COVID-19+), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Chronic viral RNA carriers exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of non-conventional monocytes and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T helper cells, and non-naive Granzyme B+ FasL+, EomehighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255202

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are urgently needed to control the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand. We have developed a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized pre-fusion SARS-CoV-2 Spike protein, named GRAd-COV2. We aimed to assess the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. To this purpose, a phase 1, dose-escalation, open-label trial was conducted including 90 healthy subjects, (45 aged 18-55 years and 45 aged 65-85 years), who received a single intramuscular administration of GRAd-CoV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious AE was reported. Four weeks after vaccination, seroconversion to Spike/RBD was achieved in 43/44 young volunteers and in 45/45 older subjects. Consistently, neutralizing antibodies were detected in 42/44 younger age and 45/45 older age volunteers. In addition, GRAd-COV2 induced a robust and Th1-skewed T cell response against the S antigen in 89/90 subjects from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support further development of this vaccine. One Sentence SummaryGRAd-COV2, a candidate vaccine for COVID-19 based on a novel gorilla adenovirus, is safe and immunogenic in younger and older adults

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-366666

ABSTRACT

In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level. Host conditions and comorbidities were identified as risk factors for severe and fatal disease courses, but the mechanisms of interaction between host and SARS-CoV-2 determining the grade of COVID- 19 severity, are still unknown. We provide a network analysis on protein-protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred on published PPI, using an explorative algorithm (Random Walk with Restart) triggered by all the 28 proteins of SARS-CoV-2, or each single viral protein one-by-one. The functional analysis for all proteins, linked to many aspects of COVID-19 pathogenesis, allows to identify the subcellular districts, where SARS-CoV-2 proteins seem to be distributed, while in each interactome built around one single viral protein, a different response was described, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, an explorative network-based approach was applied to Bradykinin Storm, highlighting a possible direct action of ORF3a and NS7b to enhancing this condition. This network-based model for SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific clinical outcomes. We identified possible host responses induced by specific proteins of SARS-CoV-2, underlining the important role of specific viral accessory proteins in pathogenic phenotypes of severe COVID-19 patients.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20213553

ABSTRACT

BACKGROUNDTreatment of severe Corona Virus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data. METHODSIn this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned to receive either UC-MSCs (4 x 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test, maximum vital capacity, diffusing capacity, and adverse events were recorded and analysed. RESULTS100 COVID-19 patients were finally recruited to receive either UC-MSCs (n = 65) or placebo (n = 35). UC-MSCs administration exerted numerical improvement in whole lung lesion volume from baseline to day 28 compared with the placebo (the median difference was -13.31%, 95%CI -29.14%, 2.13%, P=0.080). UC-MSCs significantly reduced the proportions of solid component lesion volume compared with the placebo (median difference: -15.45%; 95% CI -30.82%, -0.39%; P=0.043). The 6-minute walk test showed an increased distance in patients treated with UC-MSCs (difference: 27.00 m; 95% CI 0.00, 57.00; P=0.057). The incidence of adverse events was similar in the two groups. CONCLUSIONSUC-MSCs treatment is a safe and potentially effective therapeutic approach for COVID-19 patients with lung damage. (Funded by The National Key R&D Program of China and others. ClinicalTrials.gov number, NCT04288102.)

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-217703

ABSTRACT

In COVID-19 caused by SARS-CoV-2 infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of five healthy donors and 13 COVID-19 patients including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in COVID-19 patients showed a strong interferon-alpha response, and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ Effector-GNLY (Granulysin), CD8+ Effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during the disease progression.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20137141

ABSTRACT

SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focussed on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; 8 patients with Mild COVID-19 disease and 8 cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated to asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-082487

ABSTRACT

BackgroundEpidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. MethodsWe investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-host interactome was carried out in order to provide a theoretic host-pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein-protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. ResultsAlthough the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. ConclusionsIn this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...