Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(7): e0241921, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35311509

ABSTRACT

Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and ß, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).


Subject(s)
Butyrates , Petroleum , 1-Butanol/metabolism , Acetone/metabolism , Butanols/metabolism , Butyrates/metabolism , Clostridium/genetics , Clostridium/metabolism , Ethanol/metabolism , Fermentation , Glucose/metabolism , Lignin , Petroleum/metabolism , Sugars/metabolism
2.
Biotechnol Biofuels ; 14(1): 34, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33516261

ABSTRACT

BACKGROUND: Butanol (n-butanol) has been gaining attention as a renewable energy carrier and an alternative biofuel with superior properties to the most widely used ethanol. We performed 48 anaerobic fermentations simultaneously with glucose and xylose as representative lignocellulosic sugars by Clostridium beijerinckii NCIMB 8052 in BioLector® microbioreactors to understand the effect of different sugar mixtures on fermentation and to demonstrate the applicability of the micro-cultivation system for high-throughput anaerobic cultivation studies. We then compared the results to those of similar cultures in serum flasks to provide insight into different setups and measurement methods. RESULTS: ANOVA results showed that the glucose-to-xylose ratio affects both growth and production due to Carbon Catabolite Repression. The study demonstrated successful use of BioLector® system for the first time for screening several media and sugar compositions under anaerobic conditions by using online monitoring of cell mass and pH in real-time and at unprecedented time-resolution. Fermentation products possibly interfered with dissolved oxygen (DO) measurements, which require a careful interpretation of DO monitoring results. CONCLUSIONS: The statistical approach to evaluate the microbioreactor setup, and information obtained in this study will support further research in bioreactor and bioprocess design, which are very important aspects of industrial fermentations of lignocellulosic biomass.

3.
PLoS One ; 14(4): e0212990, 2019.
Article in English | MEDLINE | ID: mdl-30990806

ABSTRACT

The production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.


Subject(s)
Bacteria/metabolism , Calcium Carbonate/chemistry , Carbon Dioxide/toxicity , Chemical Precipitation , Bacillus , Bacteria/chemistry , Carbon Dioxide/chemistry , Construction Industry , Construction Materials , Humans , Hydrolysis , Soil/chemistry , Urease/chemistry
4.
Int J Biol Macromol ; 129: 634-644, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30738163

ABSTRACT

Efficient production of sugar monomers from lignocellulose is often hampered by serious bottle-necks in biomass hydrolysis. The present study reveals that ultra-sonication assisted pretreatment following autoclaving, termed as combined pretreatment, can lead to more efficient delignification of lignocellulosic biomass and an open, deformed polysaccharide matrix, found favorable for subsequent enzymatic hydrolysis, is formed. The pattern of inhibition for the enzymatic hydrolysis reaction on combined-pretreated saw dust is identified. Two main inhibition models (competitive and noncompetitive) are proposed and a better fit of experimental values with the theoretical values for the competitive inhibition model validates the proposition that in the present experiment, glucose inhibits the enzymes competitively. Additionally, accuracy of the inhibitory kinetics based models is estimated over a series of enzyme and substrate concentrations.


Subject(s)
Biomass , Cellulase/metabolism , Glucose/pharmacology , Lignin/chemistry , Xylose/pharmacology , Cellulase/antagonists & inhibitors , Hydrolysis/drug effects , Kinetics , Morus/chemistry , Sonication
5.
Environ Microbiol Rep ; 3(6): 674-81, 2011 Dec.
Article in English | MEDLINE | ID: mdl-23761356

ABSTRACT

Microorganisms colonize a variety of extreme environments, and based on cultivation studies and analyses of PCR-amplified 16S rDNA sequences, microbial life appears to extend deep into the earth crust. However, none of these studies involved comprehensive characterizations of total DNA. Here we report results of a high-coverage DNA pyrosequencing of an apparently representative and uncontaminated sample from a deep sea oil reservoir located 2.5 km subsurface, attributing a pressure and temperature of 250 bars and 85°C respectively. Bioinformatic analyses of the DNA sequences indicate that the reservoir harbours a rich microbial community dominated by a smaller number of taxa. Comparison of the metagenome with sequences in databases indicated that there may have been contact between the oil reservoir and surface communities late in the sequence of geological events leading to oil reservoir formation. One specific gene, encoding a putative enolase, was synthesized and expressed in Escherichia coli. Enolase activity was confirmed and was found to be much more thermotolerant than for a corresponding E. coli enzyme, consistent with the conditions in the oil reservoir.

6.
Appl Microbiol Biotechnol ; 72(2): 353-60, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16520925

ABSTRACT

A bacterial strain capable of utilizing n-alkanes with chain lengths ranging from decane (C10H22) to tetracontane (C40H82) as a sole carbon source was isolated using a system for screening microorganisms able to grow on paraffin (mixed long-chain n-alkanes). The isolate, identified according to its 16S rRNA sequence as Acinetobacter venetianus, was designated A. venetianus 6A2. Two DNA fragments encoding parts of AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, were polymerase chain reaction-amplified from the genome of A. venetianus 6A2. To study the roles of these two alkM paralogues in n-alkane utilization in A. venetianus 6A2, we constructed alkMa, alkMb, and alkMa/alkMb disruption mutants. Studies on the growth patterns of the disruption mutants using n-alkanes with different chain lengths as sole carbon source demonstrated central roles for the alkMa and alkMb genes in utilization of C10 to C18 n-alkanes. Comparative analysis of these patterns also suggested different substrate preferences for AlkMa and AlkMb in n-alkane utilization. Because both single and double mutants were able to grow on n-alkanes with chain lengths of C20 and longer, we concluded that yet another enzyme(s) for the utilization of these n-alkanes must exist in A. venetianus 6A2.


Subject(s)
Acinetobacter/metabolism , Alkanes/metabolism , Cytochrome P-450 CYP4A/metabolism , Acinetobacter/genetics , Acinetobacter/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytochrome P-450 CYP4A/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Sequence Data , Mutation/genetics , Paraffin/metabolism , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Substrate Specificity
7.
Int J Food Microbiol ; 87(1-2): 35-43, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-12927705

ABSTRACT

Bacteriocins are amphiphilic peptides susceptible to adsorption to food macromolecules and proteolytic degradation. These properties may limit their use as preservation agents. The aim of the present work has been to elucidate the fate of the bacteriocin sakacin P in food. Nisin was used in a few experiments for comparison. Recovery of bacteriocins was studied in homogenates of cold-smoked salmon, chicken cold cuts and raw chicken, with verification of the results in the corresponding food products. More than 80% of the added sakacin P and nisin were quickly adsorbed to proteins in the food matrix. In foods that had not been heat-treated, proteolytic activity caused a rapid degradation of the bacteriocins, with less than 1% of the total activity left after 1 week in cold-smoked salmon, and even less in raw chicken. In heat-treated foods, the bacteriocin activity was stable for more than 4 weeks. The high fat content in salmon compared to chicken had no adverse effect on bacteriocin recovery or activity. However, mixing of triglyceride oils and bacteriocin solutions caused a considerable loss of activity. No principal differences were observed between sakacin P and nisin, but less nisin was adsorbed to muscle proteins at low pH, and the negative effect of oils was less pronounced for nisin. Growth of Listeria monocytogenes was completely inhibited for at least 3 weeks in both chicken cold cuts and cold-smoked salmon by addition of sakacin P (3.5 microg/g), despite the proteolytic degradation in the salmon.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Food Preservation/methods , Listeria monocytogenes/drug effects , Nisin/pharmacology , Poultry Products/microbiology , Seafood/microbiology , Adsorption , Animals , Chickens , Hydrogen-Ion Concentration , Listeria monocytogenes/growth & development , Seafood/analysis , Time Factors
8.
Biochim Biophys Acta ; 1570(2): 104-12, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11985894

ABSTRACT

AlgE2, AlgE4, and AlgE6 are members of a family of mannuronan C-5 epimerases encoded by Azotobacter vinelandii, and are active in the biosynthesis of alginate, where they catalyze the post-polymerization conversion of beta-D-mannuronic acid residues into alpha-L-guluronic acid residues. To study the kinetics and mode of action of these enzymes, homopolymeric mannuronan and other alginate samples with various composition were epimerized by letting the enzymatic reaction take place in an NMR tube. Series of 1H NMR spectra were recorded to obtain a time-resolved picture of the epimerization progress and the formation of specific monomer sequences. Starting from mannuronan, guluronic acid contents of up to 82% were introduced by the enzymes, and the product specificity, substrate selectivity, and reaction rates have been investigated. To obtain direct information of the GulA-block formation, similar experiments were performed using a 13C-1-enriched mannuronan as substrate. The NMR results were found to be in good agreement with data obtained by a radioisotope assay based on 3H-5-labeled substrates.


Subject(s)
Azotobacter vinelandii/metabolism , Carbohydrate Epimerases/metabolism , Hexuronic Acids/metabolism , Magnetic Resonance Spectroscopy/methods , Alginates/metabolism , Azotobacter vinelandii/chemistry , Carbohydrate Epimerases/chemistry , Carbon Isotopes , Glucuronic Acid , Polymers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...