Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 339(11): 2009-17, 2004 Aug 02.
Article in English | MEDLINE | ID: mdl-15261594

ABSTRACT

The physiologically active, gel-forming fraction of the alkali-extractable polysaccharides of Plantago ovata Forsk seed husk (psyllium seed) and some derived partial hydrolysis products were studied by compositional and methylation analysis and NMR spectroscopy. Resolving the conflicting claims of previous investigators, the material was found to be a neutral arabinoxylan (arabinose 22.6%, xylose 74.6%, molar basis; only traces of other sugars). With about 35% of nonreducing terminal residues, the polysaccharide is highly branched. The data are compatible with a structure consisting of a densely substituted main chain of beta-(1-->4)-linked D-xylopyranosyl residues, some carrying single xylopyranosyl side chains at position 2, others bearing, at position 3, trisaccharide branches having the sequence L-Araf-alpha-(1-->3)-D-Xylp-beta-(1-->3)-l-Araf. The presence of this sequence is supported by methylation and NMR data, and by the isolation of the disaccharide 3-O-beta-D-xylopyranosyl-L-arabinose as a product of partial acid hydrolysis of the polysaccharide.


Subject(s)
Plantago/chemistry , Polysaccharides/chemical synthesis , Arabinose/chemistry , Gels/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Methylation , Oxidation-Reduction , Polysaccharides/chemistry , Xylose/chemistry
2.
Proc Nutr Soc ; 62(1): 207-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12749348

ABSTRACT

A series of experiments and evaluations of fractions isolated from psyllium seed husk (PSH) were used to test the overall hypothesis that a gel-forming component of PSH is not fermented and that it is this component that is responsible for the laxative and cholesterol-lowering properties of PSH. A gel is isolated from human stools collected during a controlled diet study when PSH is consumed but not when the control diet only is consumed. Evaluations of three fractions isolated from PSH suggest that gel-forming fraction B, which is about 55% of PSH, is poorly fermented and is the component that increases stool moisture and faecal bile acid excretion, the latter leading to lower blood cholesterol levels. Fraction C, representing < 15% of PSH, is viscous, but is rapidly fermented. Fraction A is alkali-insoluble material that is not fermented. In concentrations comparable with their presence in PSH, fractions A and C do not alter moisture and bile acid output. The active fraction of PSH is a highly-branched arabinoxylan consisting of a xylose backbone and arabinose- and xylose-containing side chains. In contrast to arabinoxylans in cereal grains that are extensively fermented, PSH possesses a structural feature, as yet unidentified, that hinders its fermentation by typical colonic microflora.


Subject(s)
Cathartics/pharmacology , Dietary Fiber/pharmacology , Hypercholesterolemia/drug therapy , Psyllium/chemistry , Cathartics/administration & dosage , Colon/microbiology , Dietary Fiber/administration & dosage , Feces/chemistry , Fermentation , Gels , Humans , Viscosity
3.
J Nutr ; 132(9): 2638-43, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12221223

ABSTRACT

Psyllium seed husk (PSH) increases stool output and lowers blood cholesterol levels in humans. PSH and three fractions isolated from it were meal-fed to colectomized rats and fermented in vitro to test the hypothesis that viscous, gel-forming fraction B was responsible for these physiological actions. Control rats were fed 50 g/kg cellulose. The concentration of each PSH fraction in the test meals was equivalent to its concentration in PSH. Yields of the fractions were: A, 171; B, 575; and C, 129 g/kg of PSH. The wet weight and moisture content of ileal excreta (IE) from rats fed test meals containing PSH or fraction B were greater than those measured in excreta from rats fed meals containing cellulose or the other two PSH fractions. Total bile acids in IE did not differ between rats fed PSH or fraction B and were greater in these groups than in the other groups. Fraction A was not fermented during 3 d of incubation; fraction B was poorly fermented, with approximately 30% of the constituent sugars disappearing; and fraction C was rapidly and nearly completely fermented. These results indicate that the gel-forming fraction we isolated from PSH is the physiologically active component of the husks.


Subject(s)
Bile Acids and Salts/analysis , Cathartics/chemistry , Gastrointestinal Contents/chemistry , Ileum/metabolism , Psyllium/chemistry , Water/analysis , Animals , Arabinose/analysis , Arabinose/metabolism , Carbohydrate Metabolism , Carbohydrates/analysis , Colectomy , Fatty Acids, Volatile/biosynthesis , Fermentation , Gels , Male , Rats , Rats, Sprague-Dawley , Xylose/analysis , Xylose/metabolism
4.
J Am Diet Assoc ; 102(7): 993-1000, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12146567

ABSTRACT

Dietary fiber consists of the structural and storage polysaccharides and lignin in plants that are not digested in the human stomach and small intestine. A wealth of information supports the American Dietetic Association position that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Recommended intakes, 20-35 g/day for healthy adults and age plus 5 g/day for children, are not being met, because intakes of good sources of dietary fiber, fruits, vegetables, whole and high-fiber grain products, and legumes are low. Consumption of dietary fibers that are viscous lowers blood cholesterol levels and helps to normalize blood glucose and insulin levels, making these kinds of fibers part of the dietary plans to treat cardiovascular disease and type 2 diabetes. Fibers that are incompletely or slowly fermented by microflora in the large intestine promote normal laxation and are integral components of diet plans to treat constipation and prevent the development of diverticulosis and diverticulitis. A diet adequate in fiber-containing foods is also usually rich in micronutrients and nonnutritive ingredients that have additional health benefits. It is unclear why several recently published clinical trials with dietary fiber intervention failed to show a reduction in colon polyps. Nonetheless, a fiber-rich diet is associated with a lower risk of colon cancer. A fiber-rich meal is processed more slowly, which promotes earlier satiety, and is frequently less calorically dense and lower in fat and added sugars. All of these characteristics are features of a dietary pattern to treat and prevent obesity. Appropriate kinds and amounts of dietary fiber for the critically ill and the very old have not been clearly delineated; both may need nonfood sources of fiber. Many factors confound observations of gastrointestinal function in the critically ill, and the kinds of fiber that would promote normal small and large intestinal function are usually not in a form suitable for the critically ill. Maintenance of body weight in the inactive older adult is accomplished in part by decreasing food intake. Even with a fiber-rich diet, a supplement may be needed to bring fiber intakes into a range adequate to prevent constipation. By increasing variety in the daily food pattern, the dietetics professional can help most healthy children and adults achieve adequate dietary fiber intakes.


Subject(s)
Dietary Fiber/administration & dosage , Dietetics , Cardiovascular Diseases/prevention & control , Cathartics/administration & dosage , Cathartics/adverse effects , Cholelithiasis/prevention & control , Dietary Fiber/adverse effects , Gastrointestinal Diseases/prevention & control , Health Promotion , Humans , Metabolic Diseases/prevention & control , Public Health , Societies , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...