Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12496, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38821995

ABSTRACT

Designing materials capable of disinfecting water without releasing harmful by-products is an ongoing challenge. Here, we report a novel polycationic sponge material synthesized from chitosan derivatives and cellulose fibers, exhibiting antibacterial properties. The design of such material is based on three key principles. First, the formation of a highly porous structure through cryogelation for an extensive surface area. Second, the incorporation of cationic quaternary ammonium moieties onto chitosan to enhance bacterial adsorption and antibacterial activity. Lastly, the reinforcement of mechanical properties through integration of cellulose fibers. The presented sponge materials exhibit up to a 4-log (99.99%) reduction within 6 h against both gram-positive B. subtilis and gram-negative E. coli. Notably, QCHI90/Cell, with the highest surface charge, exhibits a 2-4.5 log reduction within 1 h of incubation time. The eco-friendly synthesis from water and readily available biomaterials, along with cost-effectiveness and simplicity, underscores its versatility and feasibility of upscaling. Together with its outstanding antibacterial activity, this macroporous biomaterial emerges as a promising candidate for water disinfection applications.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cellulose , Chitosan , Escherichia coli , Water Purification , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Cellulose/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods , Chitosan/chemistry , Water Microbiology , Bacillus subtilis/drug effects , Porosity , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Adsorption
2.
RSC Adv ; 14(20): 14091-14099, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38686292

ABSTRACT

The emergence of biological ligand as an alternative to chemical ligands enables a sustainable lanthanide extraction route. In this study, a peptide originating from the loop of domain 4 calmodulin (EF4) was synthesized and the interaction with europium ions was monitored using time resolved laser fluorescence spectroscopy (TRLFS). Despite being retracted from its full protein structure, the twelve amino acids of calmodulin-EF4 showed binding to europium. Europium-peptide complex formation was evident by an increase in decay time from 110 to 187 µs. The spectra of europium bound to peptide can be easily distinguished from the free europium ion as the 5D0 → 7F2 peak intensifies. When europium bound to the peptide-polymer conjugate, the decay time was further increased to 259 µs. This suggests that lanthanide binding can be enhanced by immobilizing the short peptide into a polymer matrix. The europium-peptide/conjugate bond was reversible, triggered by pH, promoting peptide reusability. Due to the fact that the study was conducted exclusively in water, it suggests minimal use of chemicals is possible while maintaining peptide affinity. This makes the calmodulin-EF4 peptide an ideal candidate as biological ligand. This study lays the groundwork for developing a peptide-based filter material for lanthanide separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...