Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 24(4): e202200407, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36166450

ABSTRACT

Protein phosphorylation is one of the most ubiquitous post-translational modifications, regulating numerous essential processes in cells. Accordingly, the large-scale annotation of phosphorylation sites continues to provide central insight into the regulation of signaling networks. The global analysis of the phosphoproteome typically relies on mass spectrometry analysis of phosphopeptides, with an enrichment step necessary due to the sub-stoichiometric nature of phosphorylation. Several affinity-based methods and chemical modification strategies have been developed to date, but the choice of enrichment method can have a considerable impact on the results. Here, we show that a biotinylated, photo-cleavable phosphorimidazolide reagent permits the immobilization and subsequent cleavage of phosphopeptides. The method is capable of the capture and release of phosphopeptides of varying characteristics, and this mild and selective strategy expands the current repertoire for phosphopeptide chemical modification with the potential to enrich and identify new phosphorylation sites in the future.


Subject(s)
Phosphopeptides , Protein Processing, Post-Translational , Phosphopeptides/analysis , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphorylation , Mass Spectrometry , Signal Transduction
2.
J Am Chem Soc ; 143(34): 13538-13547, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34382787

ABSTRACT

Site-selective protein-protein coupling has long been a goal of chemical biology research. In recent years, that goal has been realized to varying degrees through a number of techniques, including the use of tyrosinase-based coupling strategies. Early publications utilizing tyrosinase from Agaricus bisporus(abTYR) showed the potential to convert tyrosine residues into ortho-quinone functional groups, but this enzyme is challenging to produce recombinantly and suffers from some limitations in substrate scope. Initial screens of several tyrosinase candidates revealed that the tyrosinase from Bacillus megaterium (megaTYR) is an enzyme that possesses a broad substrate tolerance. We use the expanded substrate preference as a starting point for protein design experiments and show that single point mutants of megaTYR are capable of activating tyrosine residues in various sequence contexts. We leverage this new tool to enable the construction of protein trimers via a charge-directed sequential activation of tyrosine residues (CDSAT).


Subject(s)
Monophenol Monooxygenase/metabolism , Tyrosine/metabolism , Bacillus megaterium/enzymology , Benzoquinones/chemistry , Benzoquinones/metabolism , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/genetics , Mutagenesis , Mutagenesis, Site-Directed , Protein Multimerization , Tyrosine/chemistry
3.
ACS Cent Sci ; 6(9): 1564-1571, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32999931

ABSTRACT

The synthesis of protein-protein and protein-peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into o-quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.

4.
J Am Chem Soc ; 142(11): 5078-5086, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32093466

ABSTRACT

Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.


Subject(s)
Bacterial Proteins/chemistry , Monophenol Monooxygenase/chemistry , Single-Chain Antibodies/chemistry , Tyrosine/chemistry , Bacillus megaterium/enzymology , Oxidative Coupling , Quinones/chemical synthesis
5.
J Am Chem Soc ; 141(9): 3885-3892, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30726077

ABSTRACT

A convenient enzymatic strategy is reported for the modification of proline residues in the N-terminal positions of proteins. Using a tyrosinase enzyme isolated from Agaricus bisporus (abTYR), phenols and catechols are oxidized to highly reactive o-quinone intermediates that then couple to N-terminal proline residues in high yield. Key advantages of this bioconjugation method include (1) the use of air-stable precursors that can be prepared on large scale if needed, (2) mild reaction conditions, including low temperatures, (3) the targeting of native functional groups that can be introduced readily on most proteins, and (4) the use of molecular oxygen as the sole oxidant. This coupling strategy was successfully demonstrated for the attachment of a variety of phenol-derivatized cargo molecules to a series of protein substrates, including self-assembled viral capsids, enzymes, and a chitin binding domain (CBD). The ability of the CBD to bind to the surfaces of yeast cells was found to be unperturbed by this modification reaction.


Subject(s)
Monophenol Monooxygenase/metabolism , Phenols/metabolism , Proline/metabolism , Quinones/metabolism , Agaricus/enzymology , Models, Molecular , Molecular Structure , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/isolation & purification , Phenols/chemistry , Proline/chemistry , Quinones/chemistry
6.
Chem Sci ; 9(27): 5929-5936, 2018 Jul 21.
Article in English | MEDLINE | ID: mdl-30079207

ABSTRACT

An important step in elucidating the function of protein post-translational modifications (PTMs) is gaining access to site-specifically modified, homogeneous samples for biochemical characterization. Protein pyrophosphorylation is a poorly characterized PTM, and here a chemical approach to obtain pyrophosphoproteins is reported. Photo-labile phosphorimidazolide reagents were developed for selective pyrophosphorylation, affinity-capture, and release of pyrophosphoproteins. Kinetic analysis of the reaction revealed rate constants between 9.2 × 10-3 to 0.58 M-1 s-1, as well as a striking proclivity of the phosphorimidazolides to preferentially react with phosphate monoesters over other nucleophilic side chains. Besides enabling the characterization of pyrophosphorylation on protein function, this work highlights the utility of phosphoryl groups as handles for selective protein modification for a variety of applications, such as phosphoprotein bioconjugation and enrichment.

7.
Top Curr Chem (Cham) ; 375(2): 22, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168647

ABSTRACT

Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.


Subject(s)
Amino Acids/metabolism , Amino Acids/chemistry , Humans , Phosphorylation , Proteins/chemistry , Proteins/metabolism , Serine/chemistry , Serine/metabolism , Threonine/chemistry , Threonine/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
8.
Chem Soc Rev ; 45(22): 6311-6326, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27462803

ABSTRACT

The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.

9.
J Am Chem Soc ; 136(1): 108-11, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24350643

ABSTRACT

A highly selective and convenient method for the synthesis of pyrophosphopeptides in solution is reported. The remarkable compatibility with functional groups (alcohol, thiol, amine, carboxylic acid) in the peptide substrates suggests that the intrinsic nucleophilicity of the phosphoserine residue is much higher than previously appreciated. Because the methodology operates in polar solvents, including water, a broad range of pyrophosphopeptides can be accessed. We envision these peptides will find widespread applications in the development of mass spectrometry and antibody-based detection methods for pyrophosphoproteins.


Subject(s)
Inositol Phosphates/chemistry , Peptides/metabolism , Models, Molecular , Molecular Structure , Peptides/chemistry , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...