Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 151: 104601, 2024 03.
Article in English | MEDLINE | ID: mdl-38307358

ABSTRACT

OBJECTIVE: The recent SARS-CoV-2 pandemic has exhibited diverse patterns of spread across countries and communities, emphasizing the need to consider the underlying population dynamics in modeling its progression and the importance of evaluating the effectiveness of non-pharmaceutical intervention strategies in combating viral transmission within human communities. Such an understanding requires accurate modeling of the interplay between the community dynamics and the disease propagation dynamics within the community. METHODS: We build on an interaction-driven model of an airborne disease over contact networks that we have defined. Using the model, we evaluate the effectiveness of temporal, spatial, and spatiotemporal social distancing policies. Temporal social distancing involves a pure dilation of the timeline while preserving individual activity potential and thus prolonging the period of interaction; spatial distancing corresponds to social distancing pods; and spatiotemporal distancing pertains to the situation in which fixed subgroups of the overall group meet at alternate times. We evaluate these social distancing policies over real-world interactions' data and over history-preserving synthetic temporal random networks. Furthermore, we evaluate the policies for the disease's with different number of initial patients, corresponding to either the phase in the progression of the infection through a community or the number of patients infected together at the initial infection event. We expand our model to consider the exposure to viral load, which we correlate with the meetings' duration. RESULTS: Our results demonstrate the superiority of decreasing social interactions (i.e., time dilation) within the community over partial isolation strategies, such as the spatial distancing pods and the spatiotemporal distancing strategy. In addition, we found that slow-spreading pathogens (i.e., pathogens that require a longer exposure to infect) spread roughly at the same rate as fast-spreading ones in highly active communities. This result is surprising since the pathogens may follow different paths. However, we demonstrate that the dilation of the timeline considerably slows the spread of the slower pathogens. CONCLUSIONS: Our results demonstrate that the temporal dynamics of a community have a more significant effect on the spread of the disease than the characteristics of the spreading processes.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Physical Distancing , SARS-CoV-2 , Pandemics , Policy
2.
Sci Rep ; 13(1): 12955, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563358

ABSTRACT

Interaction-driven modeling of diseases over real-world contact data has been shown to promote the understanding of the spread of diseases in communities. This temporal modeling follows the path-preserving order and timing of the contacts, which are essential for accurate modeling. Yet, other important aspects were overlooked. Various airborne pathogens differ in the duration of exposure needed for infection. Also, from the individual perspective, Covid-19 progression differs between individuals, and its severity is statistically correlated with age. Here, we enrich an interaction-driven model of Covid-19 and similar airborne viral diseases with (a) meetings duration and (b) personal disease progression. The enriched model enables predicting outcomes at both the population and the individual levels. It further allows predicting individual risk of engaging in social interactions as a function of the virus characteristics and its prevalence in the population. We further showed that the enigmatic nature of asymptomatic transmission stems from the latent effect of the network density on this transmission and that asymptomatic transmission has a substantial impact only in sparse communities.


Subject(s)
COVID-19 , Models, Theoretical , Humans , COVID-19/epidemiology , COVID-19/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...