Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Langmuir ; 36(27): 7943-7947, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32551666

ABSTRACT

The density within the interface between two fluid phases at equilibrium gradually changes from that of one phase to that of the other. The main change in density, according to experimental measurements, practically occurs over a finite distance of O [1 nm]. If we assume that the average stress difference within the interface is on the order of magnitude of ambient pressure, then the Bakker equation implies that for a liquid with surface tensions, say ∼50 mN/m, we get an interface thickness of ∼500 nm. This is certainly too big because it contradicts experimental findings. Alternatively, if the thickness is assumed to be O [10 nm] or less, as is usually believed, the average stress difference must be ∼5 × 106 N/m2 or bigger, which is surprisingly high. This paper shows using a few approaches that such a high average stress difference is due to negative stresses in the interface.

2.
J Colloid Interface Sci ; 568: 148-154, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32088445

ABSTRACT

Much attention has been recently given to the development of methods to produce super-hydrophobic surfaces. In most cases, these developments are done empirically, by trial and error. The objective of the present study is to find out which parameters should be given to the designer of a super-hydrophobic surface in order to enable a methodological approach, based on understanding the underlying mechanisms. To this end, the interrelationships between the main parameters that determine super-hydrophobicity (roll-off angle, apparent contact angle, contact angle hysteresis, and fraction of wetted area) are presented. It is demonstrated that all the studied parameters interrelate in such a way that it is enough to use the area fraction of the ϕ liquid-air interface within the roughness grooves as a design parameter. For a sufficiently high value of this parameter, the resulting super-hydrophobic surface is relatively insensitive to the specific form of the roughness, if the conditions for thermodynamic stability are fulfilled.

3.
iScience ; 11: 178-188, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30612036

ABSTRACT

Single-cell analysis is a rapidly evolving to characterize molecular information at the individual cell level. Here, we present a new approach with the potential to overcome several key challenges facing the currently available techniques. The approach is based on the identification of volatile organic compounds (VOCs), viz. organic compounds having relatively high vapor pressure, emitted to the cell's headspace. This concept is demonstrated using lung cancer cells with various p53 genetic status and normal lung cells. The VOCs were analyzed by gas chromatography combined with mass spectrometry. Among hundreds of detected compounds, 18 VOCs showed significant changes in their concentration levels in tumor cells versus control. The composition of these VOCs was found to depend, also, on the sub-molecular structure of the p53 genetic status. Analyzing the VOCs offers a complementary way of querying the molecular mechanisms of cancer as well as of developing new generation(s) of biomedical approaches for personalized screening and diagnosis.

4.
Langmuir ; 33(46): 13444-13450, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29076728

ABSTRACT

Capillary condensation (CC), namely, the formation from the vapor of a stable phase of drops below the saturation pressure, is a prevalent phenomenon. It may occur inside porous structures or between surfaces of particles. CC between surfaces, a liquid "bridge", is of particular practical interest because of its resulting adhesive force. To date, studies have focused on pure water condensation. However, nonvolatile materials, such as salts and surfactants, are prevalent in many environments. In the current study, the effect of these contaminants on CC is investigated from a thermodynamic point of view. This is done by computing the Gibbs energy of such systems and developing the modified Kelvin equation, based on the Kohler theory. The results demonstrate that nonvolatile solutes may have a number of major effects, including an increase in the critical radius and the stabilization of the newly formed phase.

5.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28320890

ABSTRACT

Vascular bubble models, which present a realistic biophysical approach, hold great promise for devising suitable diver decompression procedures. Nanobubbles were found to nucleate on a flat hydrophobic surface, expanding to form bubbles after decompression. Such active hydrophobic spots (AHS) were formed from lung surfactants on the luminal aspect of ovine blood vessels. Many of the phenomena observed in these bubbling vessels correlated with those known to occur in diving. On the basis of our previous studies, which proposed a new model for the formation of arterial bubbles, we now suggest the biophysical model presented herein. There are two phases of bubble expansion after decompression. The first is an extended initiation phase, during which nanobubbles are transformed into gas micronuclei and begin to expand. The second, shorter phase is one of simple diffusion-driven growth, the inert gas tension in the blood remaining almost constant during bubble expansion. Detachment of the bubble occurs when its buoyancy exceeds the intermembrane force. Three mechanisms underlying the appearance of arterial bubbles should be considered: patent foramen ovale, intrapulmonary arteriovenous anastomoses, and the evolution of bubbles in the distal arteries with preference for the spinal cord. Other parameters that may be quantified include age, acclimation, distribution of bubble volume, AHS, individual sensitivity, and frequency of bubble formation. We believe that the vascular bubble model we propose adheres more closely to proven physiological processes. Its predictability may therefore be higher than other models, with appropriate adjustments for decompression illness (DCI) data.


Subject(s)
Biophysical Phenomena/physiology , Decompression Sickness/prevention & control , Decompression/methods , Diving/physiology , Models, Biological , Animals , Sheep
6.
Adv Colloid Interface Sci ; 244: 164-173, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27238891

ABSTRACT

The fundamentals of the thermodynamics of interfaces are reviewed and concisely presented. The discussion starts with a short review of the elements of bulk thermodynamics that are also relevant to interfaces. It continues with the interfacial thermodynamics of two-phase systems, including the definition of interfacial tension and adsorption. Finally, the interfacial thermodynamics of three-phase (wetting) systems is discussed, including the topic of non-wettable surfaces. A clear distinction is made between equilibrium conditions, in terms of minimizing energies (internal, Gibbs or Helmholtz), and equilibrium indicators, in terms of measurable, intrinsic properties (temperature, chemical potential, pressure). It is emphasized that the equilibrium indicators are the same whatever energy is minimized, if the boundary conditions are properly chosen. Also, to avoid a common confusion, a distinction is made between systems of constant volume and systems with drops of constant volume.

7.
Respir Physiol Neurobiol ; 222: 1-5, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26592146

ABSTRACT

After decompression of ovine large blood vessels, bubbles nucleate and expand at active hydrophobic spots on their luminal aspect. These bubbles will be in the path of the blood flow within the vessel, which might replenish the supply of gas-supersaturated plasma in their vicinity and thus, in contrast with our previous estimations, enhance their growth. We used the data from our previous study on the effect of pulsatile flow in ovine blood vessels stretched on microscope slides and photographed after decompression from hyperbaric exposure. We measured the diameter of 46 bubbles in 4 samples taken from 3 blood vessels (pulmonary artery, pulmonary vein, and aorta) in which both a "multi-bubble active spot" (MBAS)--which produces several bubbles at a time, and at least one "single-bubble active spot" (SBAS)--which produces a single bubble at a time, were seen together. The linear expansion rate for diameter in SBAS ranged from 0.077 to 0.498 mm/min and in MBAS from 0.001 to 0.332 mm/min. There was a trend toward a reduced expansion rate for bubbles in MBAS compared with SBAS. The expansion rate for bubbles in an MBAS when it was surrounded by others was very low. Bubble growth is related to gas tension, and under a flow regime, bubbles expand from a diameter of 0.1 to 1mm in 2-24 min at a gas supersaturation of 620 kPa and lower. There are two phases of bubble development. The slow and disperse initiation of active spots (from nanobubbles to gas micronuclei) continues for more than 1h, whereas the fast increase in size (2-24 min) is governed by diffusion. Bubble-based decompression models should not artificially reduce diffusion constants, but rather take both phases of bubble development into consideration.


Subject(s)
Air , Aorta/physiopathology , Decompression/adverse effects , Pulmonary Artery/physiopathology , Pulmonary Veins/physiopathology , Pulsatile Flow/physiology , Animals , Disease Models, Animal , Sheep , Time
8.
Langmuir ; 31(46): 12653-7, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26523466

ABSTRACT

The ingenious concept of a dividing surface of zero thickness that was introduced by Gibbs is the basis of the theory of surface tension and adsorption. However, some fundamental questions, mainly those related to the location of the dividing surface and the proper definition of relative adsorption, have remained open over the years. To avoid these questions, the present paper proposes to analyze an interfacial phase by defining a thermodynamic system of constant, but nonzero thickness. The interfacial phase is analyzed as it really is, namely a nonuniform three-dimensional entity. The current analysis redevelops the equation for calculating surface tension, though with different assumptions. However, the main point in the proposed model is that the thermodynamic interfacial system, due to its fixed thickness, conforms to the requirement of first-order homogeneity of the internal energy. This property is the key that allows using the Gibbs adsorption isotherm. It is also characteristic of the Gibbs dividing surface model, but has not always been discussed with regard to subsequent models. The resulting equation leads to a simple, "natural" expression for the relative adsorption. This expression may be compared with simulations and sophisticated surface concentration measurements, and from which the dependence of interfacial tension on the solution composition can be derived. Finally, it is important to point out that in order to calculate the interfacial tension as well as the relative adsorption from data on the properties of the interfacial phase, there is no need to know its exact thickness, as long as it is bigger than the actual thickness but sufficiently small.

9.
Langmuir ; 31(32): 8852-5, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26208143

ABSTRACT

Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

10.
Langmuir ; 31(28): 7792-8, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26121215

ABSTRACT

Liquid boiling that starts off with an insoluble gas bubble is thermodynamically analyzed. This case is an idealization of very low gas solubility and very slow diffusion of this gas in the boiling liquid. The analysis is made for a spherical, freely suspended bubble as well as for a bubble attached to a solid surface. The results predict the spontaneous formation of a stable, critical bubble at pressures higher than the saturation pressure. Stable critical radii are also predicted for pressures lower than the saturation pressure but in addition to unstable, larger critical bubbles. These bubbles are affected by the presence and nature of a solid surface. The present analysis provides a basis for a feasible explanation of the long-debated, long-time stability of nanobubbles.

11.
Respir Physiol Neurobiol ; 216: 1-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26003848

ABSTRACT

Bubbles nucleate and develop after decompression at active spots on the luminal aspect of ovine large blood vessels. Series of bubbles were shown to detach from the active spot with a mean diameter of 0.7-1.0mm in calm conditions. The effect of mechanical disturbance (striking the bowl containing the vessel or tangential flow) was studied on ovine blood vessels stretched on microscope slides and photographed after hyperbaric exposure. Diameter on detachment after a heavy blow to the bowl was 0.87 ± 0.43 mm (mean ± SD), no different from bubbles which detached without striking the bowl (0.86 ± 0.28 mm). Bubble diameter on detachment during pulsatile tangential flow at 234 cm/min, 0.99 ± 0.36 mm, was not smaller than that seen in the same blood vessels in calm conditions (0.81 ± 0.34 mm). The active spots were stained for lipids, proving their hydrophobicity. The most abundant active spots, which produced only a few bubbles, did not stain for lipids thereafter. The possibility that phospholipids were removed along with detached bubbles may correlate with acclimation to diving. The finding of bubble production at the active spots matches observed phenomena in divers: variable sensitivity to decompression, acclimation to diving, the effect of elevated gas load on increased bubble formation, a higher bubble score in the second dive on the same day, and unexplained neurological symptoms after decompression. Large bubbles released from the arterial circulation give serious cause for concern.


Subject(s)
Blood Vessels/physiology , Decompression , Gases/blood , Animals , Blood Circulation , Decompression/methods , Hyperbaric Oxygenation , In Vitro Techniques , Physical Stimulation/methods , Pulsatile Flow/physiology , Sheep , Statistics, Nonparametric
12.
Adv Colloid Interface Sci ; 222: 743-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25172583

ABSTRACT

Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation.

13.
Langmuir ; 30(46): 13823-30, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25347791

ABSTRACT

A simple, quantitative model is suggested to explain the specificity of ions with respect to inhibition of bubble coalescence following a dynamic approach. For the first time, the mode of thinning of the film in between the bubbles, as determined by the density of the bubble dispersion, is recognized as a determining factor. The specificity of the ionic effect is explained by a major difference in adsorption properties of ions, which is enhanced by the film thinning. This leads to charge separation that forms an electrical double layer at each interface of the thin, liquid film, and consequently to electrostatic repulsion. This effect is described by a simple theoretical model that consists of two fundamental equations: mass conservation of each ion in the film, and the Gibbs adsorption equation. In addition, we explain the rapid coalescence of bubbles in purified water under dynamic conditions, which is in contrast with the very slow coalescence under quasi-static conditions.

14.
Sci Rep ; 4: 4266, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24589528

ABSTRACT

Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior.

15.
Acta Biomater ; 10(7): 2894-906, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24590162

ABSTRACT

The surface wettability of biomaterials determines the biological cascade of events at the biomaterial/host interface. Wettability is modulated by surface characteristics, such as surface chemistry and surface topography. However, the design of current implant surfaces focuses mainly on specific micro- and nanotopographical features, and is still far from predicting the concomitant wetting behavior. There is an increasing interest in understanding the wetting mechanisms of implant surfaces and the role of wettability in the biological response at the implant/bone or implant/soft tissue interface. Fundamental knowledge related to the influence of surface roughness (i.e. a quantification of surface topography) on titanium and titanium alloy surface wettability, and the different associated wetting regimes, can improve our understanding of the role of wettability of rough implant surfaces on the biological outcome. Such an approach has been applied to biomaterial surfaces only in a limited way. Focusing on titanium dental and orthopaedic implants, the present study reviews the current knowledge on the wettability of biomaterial surfaces, encompassing basic and applied aspects that include measurement techniques, thermodynamic aspects of wetting and models predicting topographical and roughness effects on the wetting behavior.


Subject(s)
Dental Implants , Surface Properties , Wettability , Humans , Microscopy, Electron, Scanning , Thermodynamics
16.
Nanomedicine (Lond) ; 8(1): 43-56, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23067372

ABSTRACT

AIM: To study the feasibility of a novel method in nanomedicine that is based on breath testing for identifying Alzheimer's disease (AD) and Parkinson's disease (PD), as representative examples of neurodegenerative conditions. PATIENTS & METHODS: Alveolar breath was collected from 57 volunteers (AD patients, PD patients and healthy controls) and analyzed using combinations of nanomaterial-based sensors (organically functionalized carbon nanotubes and gold nanoparticles). Discriminant factor analysis was applied to detect statistically significant differences between study groups and classification success was estimated using cross-validation. The pattern identification was supported by chemical analysis of the breath samples using gas chromatography combined with mass spectrometry. RESULTS: The combinations of sensors could clearly distinguish AD from healthy states, PD from healthy states, and AD from PD states, with a classification accuracy of 85, 78 and 84%, respectively. Gas chromatography combined with mass spectrometry analysis showed statistically significant differences in the average abundance of several volatile organic compounds in the breath of AD, PD and healthy subjects, thus supporting the breath prints observed with the sensors. CONCLUSION: The breath prints that were identified with combinations of nanomaterial-based sensors have future potential as cost-effective, fast and reliable biomarkers for AD and PD.


Subject(s)
Alzheimer Disease/diagnosis , Breath Tests , Nanostructures , Parkinson Disease/diagnosis , Adult , Aged , Aged, 80 and over , Case-Control Studies , Gas Chromatography-Mass Spectrometry , Humans , Middle Aged
17.
Langmuir ; 28(39): 13933-42, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22946829

ABSTRACT

The role of multiscale (hierarchical) roughness in optimizing the structure of nonwettable (superhydrophobic) solid surfaces was theoretically studied for 2D systems of a drop on three different types of surface topographies with up to four roughness scales. The surface models considered here were sinusoidal, flat-top pillars, and triadic Koch curves. Three criteria were used to compare between the various topographies and roughness scales. The first is the transition contact angle (CA) between the Wenzel (W) and Cassie-Baxter (CB) wetting states, above which the CB state is the thermodynamically stable one. The second is the solid-liquid (wetted) interfacial area, as an indicator for the ease of roll-off of a drop from the superhydrophobic surfaces. The third is the protrusion height that reflects the mechanical stability of the surface against breakage. The results indicate that multiscale roughness per se is not essential for superhydrophobicity; however, it mainly decreases the necessary protrusion height. Thus, multiscale roughness is beneficial for the Lotus effect mostly with regard to mechanical stability. The sinusoidal topography with three levels of roughness scales is best for nonwettability out of the topographies studied here. This observation may partially explain why Nature chose rounded-top protrusions, such as those on the Lotus leaf. The least useful topography is the flat-top pillars with three roughness scales. In the case of the triadic Koch topography, four roughness scales are required to have nonwettable surface.

19.
Langmuir ; 27(5): 1930-4, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21247181

ABSTRACT

We demonstrate that superhydrophobic and superoleophobic nanocellulose aerogels, consisting of fibrillar networks and aggregates with structures at different length scales, support considerable load on a water surface and also on oils as inspired by floatation of insects on water due to their superhydrophobic legs. The aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Furthermore, we demonstrate high-adhesive pinning of water and oil droplets, gas permeability, light reflection at the plastron in water and oil, and viscous drag reduction of the fluorinated aerogel in contact with oil. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.


Subject(s)
Biomimetics/methods , Cellulose/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Nanostructures/chemistry , Oils/chemistry , Water/chemistry , Adhesives/chemistry , Gases/chemistry , Gels , Halogenation , Nanofibers/chemistry , Permeability , Silanes/chemistry , Surface Properties , Viscosity
20.
Langmuir ; 26(19): 15289-94, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20815356

ABSTRACT

Four types of contact angles (receding, most stable, advancing, and "static") were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The "static" CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.

SELECTION OF CITATIONS
SEARCH DETAIL
...