Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Cancers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291815

ABSTRACT

Radiotherapy for localized prostate cancer has increased the cure and survival rates of patients. Besides its local tumoricidal effects, ionizing radiation has been linked to mechanisms leading to systemic immune activation, a phenomenon called the abscopal effect. In this study, we performed gene expression analysis on peripheral blood from prostate cancer patients obtained post- radiotherapy and showed that 6 genes, including CCR7, FCGR2B, BTLA, CD6, CD3D, and CD3E, were down-regulated by a range of 1.5-2.5-fold as compared to pre-radiotherapy samples. The expression of the signature consisting of these six genes was also significantly lower post- vs. pre-radiotherapy. These genes are involved in various tumor-promoting immune pathways and their down-regulation post-radiotherapy could be considered beneficial for patients. This is supported by the fact that low mRNA expression levels for the 6-gene signature in the prostate tumor tissue was linked to better survival. Importantly, we report that this 6-gene signature strongly correlated with a favorable prognosis regardless of poor standard clinicopathological parameters (i.e., Gleason score ≥ 8 and T3 (including T3a and T3b). Our pioneering data open the possibility that the 6-gene signature identified herein may have a predictive value, but this requires further long-term studies.

3.
Cancers (Basel) ; 13(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208480

ABSTRACT

The herpes virus entry mediator (HVEM) delivers a negative signal to T cells mainly through the B and T lymphocyte attenuator (BTLA) molecule. Thus, HVEM/BTLA may represent a novel immune checkpoint during an anti-tumor immune response. However, a formal demonstration that HVEM can represent a target for cancer immunotherapy is still lacking. Here, we first showed that HVEM and BTLA mRNA expression levels were associated with a worse progression-free interval in patients with prostate adenocarcinomas, indicating a detrimental role for the HVEM/BTLA immune checkpoint during prostate cancer progression. We then showed that administration of a monoclonal antibody to human HVEM resulted in a twofold reduction in the growth of a prostate cancer cell line in NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that the therapeutic effect of the mAb depended on HVEM expression by the tumor, with no effect on graft vs. host disease or activation of human T cells in the spleen. In contrast, the proliferation and number of tumor-infiltrating leukocytes increased following treatment, and depletion of CD8+ T cells partly alleviated treatment's efficacy. The expression of genes belonging to various T cell activation pathways was enriched in tumor-infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM expressed by the tumor is an immune checkpoint for T cell-mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.

4.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33766913

ABSTRACT

CD4+Foxp3+ regulatory T (Treg) cells are central modulators of autoimmune diseases. However, the timing and location of Treg cell-mediated suppression of tissue-specific autoimmunity remain undefined. Here, we addressed these questions by investigating the role of tumor necrosis factor (TNF) receptor 2 (TNFR2) signaling in Treg cells during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We found that TNFR2-expressing Treg cells were critical to suppress EAE at peak disease in the central nervous system but had no impact on T cell priming in lymphoid tissues at disease onset. Mechanistically, TNFR2 signaling maintained functional Treg cells with sustained expression of CTLA-4 and Blimp-1, allowing active suppression of pathogenic T cells in the inflamed central nervous system. This late effect of Treg cells was further confirmed by treating mice with TNF and TNFR2 agonists and antagonists. Our findings show that endogenous Treg cells specifically suppress an autoimmune disease by acting in the target tissue during overt inflammation. Moreover, they bring a mechanistic insight to some of the adverse effects of anti-TNF therapy in patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Bone Marrow/pathology , CTLA-4 Antigen/metabolism , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Mice , Mice, Knockout , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Positive Regulatory Domain I-Binding Factor 1/metabolism , Receptors, Tumor Necrosis Factor, Type II/agonists , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism
5.
Eur J Immunol ; 50(7): 972-985, 2020 07.
Article in English | MEDLINE | ID: mdl-32012260

ABSTRACT

Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.


Subject(s)
Lymphocyte Activation , NF-kappa B/immunology , Receptors, Tumor Necrosis Factor/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Mice, Knockout , NF-kappa B/genetics , Receptors, Tumor Necrosis Factor/genetics , Signal Transduction/genetics , T-Lymphocytes, Regulatory/cytology
6.
Oncoimmunology ; 8(7): 1596005, 2019.
Article in English | MEDLINE | ID: mdl-31143518

ABSTRACT

Mice reconstituted with a human immune system and bearing human tumors represent a promising model for developing novel cancer immunotherapies. Here, we used mass cytometry and multi-parametric flow cytometry to characterize human leukocytes infiltrating a human breast cancer tumor model in immunocompromised NOD.SCID.γc-null mice reconstituted with a human immune system and compared it to samples of breast cancer patients. We observed highly activated human CD4+ and CD8+ T cells in the tumor, as well as minor subsets of innate immune cells in both settings. We also report that ICOS+ CD4+ regulatory T cells (Treg) were enriched in the tumor relative to the periphery in humanized mice and patients, providing a target to affect Treg and tumor growth. Indeed, administration of a neutralizing mAb to human ICOS reduced Treg proportions and numbers and improved CD4 + T cell proliferation in humanized mice. Moreover, a combination of the anti-ICOS mAb with cyclophosphamide reduced tumor growth, and that was associated with an improved CD8 to Treg ratio. Depletion of human CD8+ T cells or of murine myeloid cells marginally affected the effect of the combination therapy. Altogether, our results indicate that a combination of anti-ICOS mAb and chemotherapy controls tumor growth in humanized mice, opening new perspectives for the treatment of breast cancer. One sentence summary: Targeting ICOS in combination with chemotherapy is a promising strategy to improve tumor immunity in humans.

7.
Front Immunol ; 10: 2908, 2019.
Article in English | MEDLINE | ID: mdl-31921167

ABSTRACT

The induction of specific and sustainable tolerance is a challenging issue in organ transplantation. The discovery of the immunosuppressive properties of apoptotic cells in animal models has paved the way for their use in human transplantation. In this work, we aimed to define a stable, reproducible, and clinically compatible production procedure of human apoptotic cells (Apo-cells). Using a clinically approved extracorporeal photopheresis technique, we have produced and characterized phenotypically and functionally human apoptotic cells. These Apo-cells have immunosuppressive properties proved in vitro and in vivo in NOD/SCID/γC mice by their capacity to modulate an allogeneic response following both a direct and an indirect antigen presentation. These results brought the rationale for the use of Apo-cells in tolerance induction protocol for organ transplantation.


Subject(s)
Antigen Presentation , Apoptosis/immunology , Immune Tolerance , Photopheresis , Animals , Humans , Mice , Mice, Inbred NOD , Mice, SCID
8.
Oncotarget ; 8(62): 104733-104744, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29285209

ABSTRACT

FOXP3+ regulatory T cell (Treg) based cellular therapies represent promising therapeutic options in autoimmunity, allergy, transplantation and prevention of Graft Versus Host (GVH) Disease. Among human FOXP3-expressing CD4+T cells, only the CD45RA+ naïve Treg (nTreg) subset is suitable for in vitro expansion. However, FoxP3 expression decays in cells using currently described culture protocols. Rapamycin alone was not able to prevent FOXP3 loss in nTregs cells, as only a half of them maintained FOXP3 expression after 14 days of culture. In contrast we report a novel combined drug regimen that can drastically stabilize FOXP3 expression in cultured Tregs. IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors act in synergy to allow expansion of human regulatory T cells with sustained high expression of FOXP3 and CD15s with potent suppressive capacities in vitro and control of murine xeno-GVH reactions. Of note, an additional subsequent infusion of expanded nTreg cells did not improve survival of mice. Combination of IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors is optimal for the expansion in vitro of pure effective nTreg maintaining high levels of FOXP3 for therapeutic purposes.

9.
Front Immunol ; 8: 756, 2017.
Article in English | MEDLINE | ID: mdl-28713380

ABSTRACT

BACKGROUND: Graft-vs-host disease (GVHD) is a major complication of allogenic bone marrow transplantation (BMT). Targeting costimulatory molecules with antagonist antibodies could dampen the excessive immune response that occurs, while preserving the beneficial graft vs leukemia (GVL) of the allogeneic response. Previous studies using a mouse model of GVHD have shown that targeting the T-cell Inducible COStimulator (ICOS, CD278) molecule is beneficial, but it is unclear whether the same applies to human cells. METHODS: Here, we assessed whether a monoclonal antibody (mAb) to human ICOS was able to antagonize the costimulatory signal delivered in vivo to human T cells. To test this hypothesis, we used a xenogeneic model of GVHD where human peripheral blood mononuclear cells were adoptively transferred in immunocompromised NOD.SCID.gc-null mice (NSG). RESULTS: In this model, control mice invariably lost weight and died by day 50. In contrast, 65% of the mice receiving a single injection of the anti-hICOS mAb survived beyond 100 days. Moreover, a significant improvement in survival was obtained in a curative xeno-GVHD setting. Mechanistically, administration of the anti-hICOS mAb was associated with a strong reduction in perivascular infiltrates in liver and lungs and reduction in frequencies and numbers of human T cells in the spleen. In addition, the mAb prevented T-cell expansion in the blood during xeno-GVHD. Importantly, GVHD-protected mice retained the ability to control the P815 mastocytoma cell line, mimicking GVL in humans. CONCLUSION: A mAb-targeting human ICOS alleviated GVHD without impairing GVL in a xenograft murine model. Thus, ICOS represents a promising target in the management of BMT, preventing GVHD while preserving GVL.

10.
PLoS One ; 11(4): e0153682, 2016.
Article in English | MEDLINE | ID: mdl-27077371

ABSTRACT

The IL-2/JAK3/STAT-5 signaling pathway is involved on the initiation and maintenance of the transcription factor Foxp3 in regulatory T cells (Treg) and has been associated with demethylation of the intronic Conserved Non Coding Sequence-2 (CNS2). However, the role of the JAK/STAT pathway in controlling Foxp3 in the short term has been poorly investigated. Using two different JAK/STAT pharmacological inhibitors, we observed a detectable loss of Foxp3 after 10 min. of treatment that affected 70% of the cells after one hour. Using cycloheximide, a general inhibitor of mRNA translation, we determined that Foxp3, but not CD25, has a high turnover in IL-2 stimulated Treg. This reduction was correlated with a rapid reduction of Foxp3 mRNA. This loss of Foxp3 was associated with a loss in STAT-5 binding to the CNS2, which however remains demethylated. Consequently, Foxp3 expression returns to normal level upon restoration of basal JAK/STAT signaling in vivo. Reduced expression of several genes defining Treg identity was also observed upon treatment. Thus, our results demonstrate that Foxp3 has a rapid turn over in Treg partly controlled at the transcriptional level by the JAK/STAT pathway.


Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation/drug effects , Janus Kinase 3/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/cytology , Animals , DNA Methylation/drug effects , Forkhead Transcription Factors/genetics , Humans , Introns/genetics , Janus Kinase 3/antagonists & inhibitors , Mice , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism
11.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26838788

ABSTRACT

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Subject(s)
Hypertension, Pulmonary/metabolism , Kruppel-Like Transcription Factors/biosynthesis , Muscle, Smooth, Vascular/metabolism , Stem Cells/metabolism , Vascular Remodeling/physiology , Animals , Cells, Cultured , Humans , Hypertension, Pulmonary/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/pathology , Rats , Stem Cells/pathology
12.
J Immunol ; 196(5): 2109-18, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26826251

ABSTRACT

CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell therapy is a promising approach for the treatment of autoimmune diseases. To be effective, Treg cells should be in an activated state in the target tissue. This can be achieved by systemic administration of Ag-specific Treg cells, which are difficult to produce in conditions that can be translated to the clinic. In this paper, we propose an alternative approach consisting of in situ injection of preactivated polyclonal Treg cells that would exert bystander suppression in the target tissue. We show that polyclonal Treg cells suppressed uveitis in mice as efficiently as Ag-specific Treg cells but only when preactivated and administered in the vitreous. Uveitis control was correlated with an increase of IL-10 and a decrease of reactive oxygen species produced by immune cell infiltrates in the eye. Thus, our results reveal a new mechanism of Treg cell-mediated suppression and a new Treg cell therapy approach.


Subject(s)
Immunotherapy/methods , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/transplantation , Uveitis/immunology , Animals , Disease Models, Animal , Female , Flow Cytometry , Mice , Mice, Inbred BALB C , Mice, Transgenic , T-Lymphocytes, Regulatory/immunology
13.
Curr Gene Ther ; 16(1): 56-64, 2016.
Article in English | MEDLINE | ID: mdl-26725877

ABSTRACT

Immunodeficient mice reconstituted with human CD4(+) T cells, which can be achieved either by transfer of mature cells or immature progenitors, represent the only animal model to study HIV-1 infection of human lymphocytes in vivo. However, the immunocompromised status of most of these models currently rule out their use for vaccine studies. Nevertheless, the model might be ideally suited for HIV-1 gene therapy studies since eliciting an efficient anti-viral immune response is not the primary end-point. Rather, HIV-1 gene therapy should protect CD4(+) T cells from HIV-1- induced deletion and/or reduced viral replication. Here, we describe recent advancements in the field of HIV-1 gene therapy, focusing on tools and targets validated in various models of humanized mice. From the analysis of this literature, it appears that strategies targeting viral entry, by means of neutralizing antibodies or fusion inhibitors, are the most promising so far. Indeed, strategies targeting viral entry have moved to the clinic with encouraging results. Thus, humanized mice should be considered as the prime model to devise the safer and most effective HIV-1 gene therapy strategy.


Subject(s)
Disease Models, Animal , Genetic Therapy/methods , HIV Infections/therapy , HIV-1/genetics , Virus Internalization , Animals , CD4-Positive T-Lymphocytes/virology , HIV Infections/genetics , HIV Infections/virology , Humans , Mice , Mice, SCID , Molecular Targeted Therapy/methods , Receptors, CCR5/genetics
14.
PLoS One ; 10(9): e0138420, 2015.
Article in English | MEDLINE | ID: mdl-26407077

ABSTRACT

HIV replication follows a well-defined pattern during the acute phase of the infection in humans. After reaching a peak during the first few weeks after infection, viral replication resolves to a set-point thereafter. There are still uncertainties regarding the contribution of CD8(+) T cells in establishing this set-point. An alternative explanation, supported by in silico modeling, would imply that viral replication is limited by the number of available targets for infection, i.e. CD4(+)CCR5(+) T cells. Here, we used NOD.SCID.gc(-/-) mice bearing human CD4(+)CCR5(+) and CD8(+) T cells derived from CD34(+) progenitors to investigate the relative contribution of both in viral control after the peak. Using low dose of a CCR5-tropic HIV virus, we observed an increase in viral replication followed by "spontaneous" resolution of the peak, similar to humans. To rule out any possible role for CD8(+) T cells in viral control, we infected mice in which CD8(+) T cells had been removed by a depleting antibody. Globally, viral replication was not affected by the absence of CD8(+) T cells. Strikingly, resolution of the viral peak was equally observed in mice with or without CD8(+) T cells, showing that CD8(+) T cells were not involved in viral control in the early phase of the infection. In contrast, a marked and specific loss of CCR5-expressing CD4(+) T cells was observed in the spleen and in the bone marrow, but not in the blood, of infected animals. Our results strongly suggest that viral replication during the acute phase of the infection in humanized mice is mainly constrained by the number of available targets in lymphoid tissues rather than by CD8(+) T cells.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , Virus Replication/immunology , Acute-Phase Reaction/immunology , Acute-Phase Reaction/virology , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cells, Cultured , HEK293 Cells , HIV Infections/blood , HIV Infections/pathology , HIV-1/immunology , Humans , Lymphocyte Count , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Receptors, CCR5/metabolism
15.
J Immunol ; 194(3): 999-1010, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25548233

ABSTRACT

CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a major role in peripheral tolerance. Multiple environmental factors and cell types affect their biology. Among them, activated effector CD4(+) T cells can boost Treg cell expansion through TNF or IL-2. In this study, we further characterized this effector T (Teff) cell-dependent Treg cell boost in vivo in mice. This phenomenon was observed when both Treg and Teff cells were activated by their cognate Ag, with the latter being the same or different. Also, when Treg cells highly proliferated on their own, there was no additional Treg cell boost by Teff cells. In a condition of low inflammation, the Teff cell-mediated Treg cell boost involved TNF, OX40L, and plasmacytoid dendritic cells, whereas in a condition of high inflammation, it involved TNF and IL-2. Thus, this feedback mechanism in which Treg cells are highly activated by their Teff cell counterparts depends on the immune context for its effectiveness and mechanism. This Teff cell-dependent Treg cell boost may be crucial to limit inflammatory and autoimmune responses.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-2/metabolism , Receptors, OX40/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factors/metabolism , Animals , Cell Communication , Immunophenotyping , Inflammation/immunology , Inflammation/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , OX40 Ligand/metabolism , Phenotype , Protein Binding , Signal Transduction
16.
Hum Gene Ther Methods ; 25(4): 232-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25045917

ABSTRACT

Numerous strategies targeting early and late steps of the HIV life cycle have been proposed for gene therapy. However, targeting viral and host determinants of HIV entry is the only strategy that would prevent viral DNA-mediated CD4(+) cell death while diminishing the possibility for the virus to escape. To this end, we devised a bicistronic lentiviral vector expressing the membrane-bound form of the T20 fusion inhibitor, referred to as the C46 peptide, and a CCR5 superagonist, modified to sequester CCR5 away from the cell surface, referred to as the P2-CCL5 intrakine. We tested the effects of the vector on HIV infection and replication, using the human CEMR5 cell line expressing CD4 and CCR5, and primary human T cells. Transduced cells expressed the C46 peptide, detected with the 2F5 monoclonal antibody by flow cytometry. Expression of the P2-CCL5 intrakine correlates with lower levels of cell surface CCR5. Complete protection against HIV infection could be observed in cells expressing the protective transgenes. Importantly, we show that the combination of the transgenes was more potent than either transgene alone, showing the interest of expressing two entry inhibitors to inhibit HIV infection. Last, genetically modified cells possessed a selective advantage over nonmodified cells on HIV challenge in vitro, showing that modified cells were protected from HIV-induced cell death. Our results demonstrate that lentiviral vectors coexpressing the T20 fusion inhibitor and the P2-CCL5 intrakine represent promising tools for HIV gene therapy.


Subject(s)
Chemokine CCL5/genetics , Genetic Vectors/metabolism , HIV-1/physiology , Recombinant Fusion Proteins/genetics , Cells, Cultured , Chemokine CCL5/metabolism , Genetic Therapy , Genetic Vectors/genetics , HEK293 Cells , HIV Infections/therapy , Humans , Lentivirus/genetics , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/virology , Virus Internalization , Virus Replication
17.
Front Immunol ; 4: 155, 2013.
Article in English | MEDLINE | ID: mdl-23801992

ABSTRACT

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are essential players in the control of immune responses. Recently, accordingly to their origin, two main subsets of Tregs have been described: thymus-derived Tregs (tTregs) and peripherally derived Tregs (pTregs). Numerous signaling pathways including the IL-2/STAT5 or the TGF-ß/Smad3 pathways play a crucial role in segregating the two lineages. Here, we review some of the information existing on the distinct requirements of IL-2, TGF-ß, and TNF-α three major cytokines involved in tTreg and pTreg generation, homeostasis and function. Today it is clear that signaling via the IL-2Rß chain (CD122) common to IL-2 and IL-15 is required for proper differentiation of tTregs and for tTreg and pTreg survival in the periphery. This notion has led to the development of promising therapeutic strategies based on low-dose IL-2 administration to boost the patients' own Treg compartment and dampen autoimmunity and inflammation. Also, solid evidence points to TGF-ß as the master regulator of pTreg differentiation and homeostasis. However, therapeutic administration of TGF-ß is difficult to implement due to toxicity and safety issues. Knowledge on the role of TNF-α on the biology of Tregs is fragmentary and inconsistent between mice and humans. Moreover, emerging results from the clinical use of TNF-α inhibitors indicate that part of their anti-inflammatory effect may be dependent on their action on Tregs. Given the profusion of clinical trials testing cytokine administration or blocking to modulate inflammatory diseases, a better knowledge of the effects of cytokines on tTregs and pTregs biology is necessary to improve the efficiency of these immunotherapies.

18.
J Gene Med ; 14(2): 90-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22228582

ABSTRACT

BACKGROUND: Gene transfer in the thymus, based on HIV-derived lentiviral vectors, is a promising avenue for modulation of T cell selection and autoimmunity. However, the impact of intrathymic (IT) injections on an antigen-specific immune response elicited in the periphery of normal mice has not been investigated yet. METHODS: Highly concentrated stocks of lentiviral vectors expressing the soluble form of hemaglutinin of the influenza virus (LvHA) were injected in the thymus of normal BALB/c mice. The CD4 and CD8-mediated immune responses to HA after peripheral immunization were measured by various parameters. RESULTS: We first show that a lentiviral vector expressing the luciferase was detected for at least 2 months after IT-injections. We then show that the LvHA vector could elicit a functional CD4- and CD8-T cell-mediated immune responses in the peripheral lymphoid organs of BALB/c mice. IT-injection of the LvHA vector significantly curbed this response: lower numbers of transferred HA-specific CD4(+) T cells were found in LvHA-injected compared to control animals. Furthermore, lower frequencies of HA-specific CD8(+) T cells, interferon γ-producing cells and cytotoxic cells were detected from 3 weeks to 3 months in LvHA-injected mice compared to controls. However, these reduced CD8-mediated responses were not increased after depletion of CD25(+) cells in vitro or in vivo. CONCLUSIONS: The results obtained in the present study show that injection of the LvHA lentiviral vector significantly curtailed the immune response to the same antigen in the periphery. Increased selection of HA-specific regulatory T cells and negative selection of HA-specific CD8(+) T cell precursors may explain the results. Our work establish the feasibility of IT-injections of lentiviral vectors to manipulate T cell tolerance in the thymus of normal mice, for basic and pre-clinical research.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Cellular/immunology , Thymus Gland/metabolism , Animals , Enzyme-Linked Immunospot Assay , Flow Cytometry , Fluoresceins , Genetic Vectors/administration & dosage , Injections , Lentivirus , Luminescent Measurements , Mice , Mice, Inbred BALB C , Succinimides , Thymus Gland/immunology
19.
Eur J Immunol ; 42(3): 760-70, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22105329

ABSTRACT

In humanized mice, the T-cell repertoire is derived from genetically identical human progenitors in distinct animals. Thus, careful comparison of the T-cell repertoires of humanized mice with those of humans may reveal the contribution of genetic determinism on T-cell repertoire formation. Here, we performed a comprehensive assessment of the distribution of V-J combinations of the human ß chain of the T-cell receptor (hTRBV) in NOD.SCID.γc(-/-) (NSG) humanized mice. We observed that numerous V-J combinations were equally distributed in the thymus and in the periphery of humanized mice compared with human references. A global analysis of the data, comparing repertoire perturbation indices in humanized NSG mice and unrelated human PBMCs, reveals that 50% of the hTRBV families significantly overlapped. Using multivariate ranking and bootstrap analyses, we found that 18% of all possible V-J combinations contributed close to 50% of the expressed diversity, with significant over-representation of BV5-J1.1+1.2 and BV6-J1.1+1.2 rearrangements. Finally, comparison of CD3(-) and CD3(+) thymocyte repertoires indicated that the observed V-J combination overlap was already present before TCR-MHC selection in the thymus. Altogether, our results show that half of the T-cell repertoire combinatorial diversity in humans is genetically determined.


Subject(s)
Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Animals, Newborn , DNA/chemistry , DNA/genetics , Flow Cytometry , Gene Rearrangement/genetics , Gene Rearrangement/immunology , Humans , Immunoglobulin Joining Region/genetics , Immunoglobulin Joining Region/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Linear Models , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multivariate Analysis , Polymerase Chain Reaction , Specific Pathogen-Free Organisms , V(D)J Recombination/genetics , V(D)J Recombination/immunology
20.
PLoS One ; 6(4): e19038, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21541329

ABSTRACT

Signaling events affecting thymic selection of un-manipulated polyclonal natural CD25(+)foxp3(+) regulatory T cells (nTreg) have not been established ex vivo. Here, we report a higher frequency of phosphorylated STAT-5 (pSTAT-5) in nTreg cells in the adult murine thymus and to a lesser extent in the periphery, compared to other CD4(+)CD8(-) subsets. In the neonatal thymus, the numbers of pSTAT-5(+) cells in CD25(+)foxp3(-) and nTreg cells increased in parallel, suggesting that pSTAT-5(+)CD25(+)foxp3(-) cells might represent the precursors of foxp3(+) regulatory T cells. This "specific" pSTAT-5 expression detected in nTreg cells ex vivo was likely due to a very recent signal given by IL-2/IL-15 cytokines in vivo since (i) it disappeared rapidly if cells were left unstimulated in vitro and (ii) was also observed if total thymocytes were stimulated in vitro with saturating amounts of IL-2 and/or IL-15 but not IL-7. Interestingly, STAT-5 activation upon IL-2 stimulation correlated better with foxp3 and CD122 than with CD25 expression. Finally, we show that expression of an endogenous superantigen strongly affected the early Treg cell repertoire but not the proportion of pSTAT-5(+) cells within this repertoire. Our results reveal that continuous activation of the CD122/STAT-5 signaling pathway characterize regulatory lineage differentiation in the murine thymus.


Subject(s)
Epitopes/immunology , Interleukin-2 Receptor beta Subunit/immunology , STAT5 Transcription Factor/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/cytology , Aging/metabolism , Animals , Animals, Newborn , Cell Differentiation/immunology , Cell Lineage , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Kinetics , Mice , Phosphorylation , Thymus Gland/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...