Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrdata ; 5(Pt 7): x200935, 2020 Jul.
Article in English | MEDLINE | ID: mdl-36339792

ABSTRACT

The title compound, [Os3(C6H12N3P)4(CO)8], crystallizes in the ortho-rhom-bic space group Pbca with Z = 8. The mol-ecule consists of a triangular triosmium(0) core surrounded by eight carbonyl ligands and four 1,3,5-tri-aza-7-phosphatri-cyclo-[3.3.1.13,7]decane (or PTA) ligands. One Os atom is coordinated by two PTA ligands and two CO ligands, while the other two Os atoms are each bonded to a single PTA ligand and three CO ligands. There is a small disorder associated with the Os3 unit so that a minor orientation has an occupancy of 2.17 (4)%. The title compound represents the first structurally characterized triangular Os3 carbonyl cluster with four monodentate tertiary phosphane ligands.

2.
Anal Chem ; 91(21): 13324-13336, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31647638

ABSTRACT

Biological systems exhibit strikingly sophisticated properties, including adaptability, directed motion, regulation, and self-organization. Such systems are often described as being "nonequilibrium" or "out-of-equilibrium", and it can be instructive to think of them as adopting thermodynamic states that require a constant supply of energy to maintain. Despite their ubiquity, systems that demonstrate these abilities require a remarkably stringent set of chemical requirements to exist. Broadly speaking, they must be (a) capable of consuming some external source of energy that (b) acts as a fuel to do some form of work, (c) all while maintaining highly organized structural features at the nanometer length scale that persist in space and over time. It remains a grand challenge in the field of chemistry to synthesize artificial systems capable of similarly complex nonequilibrium behavior both as a means for greater fundamental understanding and as a way to imbue non-natural structures with dynamic behavior for various applications. Yet an oft-overlooked challenge in this field involves not just the synthesis of nonequilibrium materials but also their characterization. The requirements for measuring nanometer-scale systems of nonequilibrium building blocks with the appropriate temporal and spatial resolution are demanding and have heretofore been largely unavailable to researchers. In this Perspective, we highlight challenges and recent advances in the measurement of dynamic nanoscale systems. We argue that progress in this area is crucial and must occur in parallel to synthetic goals if any meaningful understanding is to occur.

3.
Acta Crystallogr C Struct Chem ; 75(Pt 5): 529-537, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31062709

ABSTRACT

Three asymmetric diosmium(I) carbonyl sawhorse complexes have been prepared by microwave heating. One of these complexes is of the type Os2(µ-O2CR)(µ-O2CR')(CO)4L2, with two different bridging carboxylate ligands, while the other two complexes are of the type Os2(µ-O2CR)2(CO)5L, with one axial CO ligand and one axial phosphane ligand. The mixed carboxylate complex Os2(µ-acetate)(µ-propionate)(CO)4[P(p-tolyl)3]2, (1), was prepared by heating Os3(CO)12 with a mixture of acetic and propionic acids, isolating Os2(µ-acetate)(µ-propionate)(CO)6, and then replacing two CO ligands with two phosphane ligands. This is the first example of an Os2 sawhorse complex with two different carboxylate bridges. The syntheses of Os2(µ-acetate)2(CO)5[P(p-tolyl)3], (3), and Os2(µ-propionate)2(CO)5[P(p-tolyl)3], (6), involved the reaction of Os3(CO)12 with the appropriate carboxylic acid to initially produce Os2(µ-carboxylate)2(CO)6, followed by treatment with refluxing tetrahydrofuran (THF) to form Os2(µ-carboxylate)2(CO)5(THF), and finally addition of tri-p-tolylphosphane to replace the THF ligand with the P(p-tolyl)3 ligand. Neutral complexes of the type Os2(µ-O2CR)2(CO)5L had not previously been subjected to X-ray crystallographic analysis. The more symmetrical disubstituted complexes, i.e. Os2(µ-formate)2(CO)4[P(p-tolyl)3]2, (8), Os2(µ-acetate)2(CO)4[P(p-tolyl)3]2, (4), and Os2(µ-propionate)2(CO)4[P(p-tolyl)3]2, (7), as well as the previously reported symmetrical unsubstituted complexes Os2(µ-acetate)2(CO)6, (2), and Os2(µ-propionate)2(CO)6, (5), were also prepared in order to examine the influence of axial ligand substitution on the Os-Os bond distance in these sawhorse molecules. Eight crystal structures have been determined and studied, namely µ-acetato-1κO:2κO'-µ-propanoato-1κO:2κO'-bis[tris(4-methylphenyl)phosphane]-1κP,2κP'-bis(dicarbonylosmium)(Os-Os) dichloromethane monosolvate, [Os2(C2H3O2)(C3H5O2)(C21H21P)2(CO)4]·CH2Cl2, (1), bis(µ-acetato-1κO:2κO')bis(tricarbonylosmium)(Os-Os), [Os2(C2H3O2)2(CO)6], (2) (redetermined structure), bis(µ-acetato-1κO:2κO')pentacarbonyl-1κ2C,2κ3C-[tris(4-methylphenyl)phosphane-1κP]diosmium(Os-Os), [Os2(C2H3O2)2(C21H21P)(CO)5], (3), bis(µ-acetato-1κO:2κO')bis[tris(4-methylphenyl)phosphane]-1κP,2κP-bis(dicarbonylosmium)(Os-Os) p-xylene sesquisolvate, [Os2(C2H3O2)2(C21H21P)2(CO)4]·1.5C8H10, (4), bis(µ-propanoato-1κO:2κO')bis(tricarbonylosmium)(Os-Os), [Os2(C3H5O2)2(CO)6], (5), pentacarbonyl-1κ2C,2κ3C-bis(µ-propanoato-1κO:2κO')[tris(4-methylphenyl)phosphane-1κP]diosmium(Os-Os), [Os2(C3H5O2)2(C21H21P)(CO)5], (6), bis(µ-propanoato-1κO:2κO')bis[tris(4-methylphenyl)phosphane]-1κP,2κP-bis(dicarbonylosmium)(Os-Os) dichloromethane monosolvate, [Os2(C3H5O2)2(C21H21P)2(CO)4]·CH2Cl2, (7), and bis(µ-formato-1κO:2κO')bis[tris(4-methylphenyl)phosphane]-1κP,2κP-bis(dicarbonylosmium)(Os-Os), [Os2(CHO2)2(C21H21P)2(CO)4], (8).

4.
Inorg Chem ; 57(21): 13640-13652, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30289701

ABSTRACT

Controlling the morphology of noble-metal nanoparticles is mandatory to tune specific properties such as catalytic and optical behavior. Heterodimers consisting of two noble metals have been synthesized, so far mostly in aqueous media using selective surfactants or chemical etching strategies. We report a facile synthesis for Au@Pd and Pd@Au heterodimer nanoparticles (NPs) with morphologies ranging from segregated domains (heteroparticles) to core-shell structures by applying a seed-mediated growth process with Au and Pd seed nanoparticles in 1-octadecene (ODE), which is a high-boiling organic solvent. The as-synthesized oleylamine (OAm) functionalized Au NPs led to the formation of OAm-Au@Pd heteroparticles with a "windmill" morphology, having an Au core and Pd "blades". The multiply twinned structure of the Au seed particles (⌀ ≈ 9-11 nm) is associated with a reduced barrier for heterogeneous nucleation. This leads to island growth of bimetallic Au@Pd heteroparticles with less-regular morphologies. The reaction process can be controlled by tuning the surface chemistry with organic ligands. Functionalization of Au NPs (Ø ≈ 9-11 nm) with 1-octadecanethiol (ODT) led to the formation of ODT-Au@Pd NPs with a closed Pd shell through a strong ligand-metal binding, which is accompanied by a redistribution of the electron density. Experiments with varied Pd content revealed surface epitaxial growth of Pd on Au. For OAm-Pd and ODT-Pd seed particles, faceted, Au-rich domain NPs and impeded core-shell NPs were obtained, respectively. This is related to the high surface energy of the small Pd seed particles (⌀ ≈ 5-7 nm). The metal distribution of all bimetallic NPs was analyzed by extended (aberration-corrected) transmission electron microscopy (HR-TEM, HAADF-STEM, EDX mapping, ED). The Au and Pd NPs, as well as the ODT-Au@Pd and OAm-Pd@Au heteroparticles, catalyze the reduction of 4-nitrophenol to 4-aminophenol with borohydride. The catalytic activity is dictated by the particle structure. OAm-Au@Pd heteroparticles with faceted Au domains had the highest activity because of a mixed Au-Pd surface structure, while ODT-Au@Pd NPs, where the active Au core is covered by a Pd shell, had the lowest activity.

5.
Nano Lett ; 18(6): 3494-3501, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29715035

ABSTRACT

The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.

SELECTION OF CITATIONS
SEARCH DETAIL
...