Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 260: 116421, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38838572

ABSTRACT

Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate. This network enables real-time monitoring of critical physiological parameters, including temperature, humidity, and muscle contraction. Remarkably, our system operates under battery-free and wireless near-field communication (NFC) technology for data readout via smartphones. Moreover, two of the three sensors were integrated onto a naturally adhesive bioinspired membrane. This membrane, developed using an eco-friendly, high-throughput process, draws inspiration from the remarkable adhesive properties of mussel-inspired molecules. The resulting ultra-conformable membrane adheres effortlessly to the skin, ensuring reliable and continuous data collection. The urgency of effective monitoring systems cannot be overstated, especially in the context of rising heat stroke incidents attributed to climate change and high-risk occupations. Heat stroke manifests as elevated skin temperature, lack of sweating, and seizures. Swift intervention is crucial to prevent progression to coma or fatality. Therefore, our proposed system holds immense promise for the monitoring of these parameters on the field, benefiting both the general population and high-risk workers, such as firefighters.


Subject(s)
Biosensing Techniques , Bivalvia , Heat Stroke , Wearable Electronic Devices , Wireless Technology , Humans , Wireless Technology/instrumentation , Biosensing Techniques/instrumentation , Animals , Heat Stroke/prevention & control , Bivalvia/chemistry , Adhesives/chemistry , Membranes, Artificial , Equipment Design , Smartphone
2.
Biosens Bioelectron ; 250: 116079, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38295580

ABSTRACT

Following the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2. We propose a multiplexed DNA-based sensing platform that utilizes inkjet-printed nanostructured gold electrodes and an inkjet-printed battery-free near-field communication (NFC) potentiostat for the simultaneous quantitative detection of two SARS-CoV-2 genes, the ORF1ab and the N gene. The detection strategy based on the formation of an RNA-DNA sandwich structure leads to a highly specific electrochemical output. The inkjet-printed nanostructured gold electrodes providing a large surface area enable efficient binding and increase the sensitivity. The inkjet-printed battery-free NFC potentiostat enables rapid measurements and real-time data analysis via a smartphone application, making the platform accessible and portable. With the advantages of speed (5 min), simplicity, sensitivity (low pM range, ∼450% signal gain) and cost-effectiveness, the proposed platform is a promising alternative for point-of-care diagnostics and high-throughput analysis that complements the COVID-19 diagnostic toolkit.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Electrodes , DNA/genetics , Gold/chemistry , Electrochemical Techniques
3.
Small ; 20(13): e2306167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963854

ABSTRACT

Colloidal metal nanoparticles dispersions are commonly used to create functional printed electronic devices and they typically require time-, energy- and equipment-consuming post-treatments to improve their electrical and mechanical properties. Traditional methods, e.g. thermal, UV/IR, and microwave treatments, limit the substrate options and may require expensive equipment, not available in all the laboratories. Moreover, these processes also cause the collapse of the film (nano)pores and interstices, limiting or impeding its nanostructuration. Finding a simple approach to obtain complex nanostructured materials with minimal post-treatments remains a challenge. In this study, a new sintering method for gold nanoparticle inks that called as "click sintering" has been reported. The method uses a catalytic reaction to enhance and tune the nanostructuration of the film while sintering the metallic nanoparticles, without requiring any cumbersome post-treatment. This results in a conductive and electroactive nanoporous thin film, whose properties can be tuned by the conditions of the reaction, i.e., concentration of the reagent and time. Therefore, this study presents a novel and innovative one-step approach to simultaneously sinter gold nanoparticles films and create functional nanostructures, directly and easily, introducing a new concept of real-time treatment with possible applications in the fields of flexible electronics, biosensing, energy, and catalysis.

4.
Small ; 19(51): e2302136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635265

ABSTRACT

Nanoscale electrodes have been a topic of intense research for many decades. Their enhanced sensitivities, born out of an improved signal-to-noise ratio as electrode dimensions decrease, make them ideal for the development of low-concentration analyte sensors. However, to date, nanoelectrode fabrication has typically required expensive equipment and exhaustive, time-consuming fabrication methods that have rendered them unsuitable for widespread use and commercialization. Herein, a method of nanoband electrode fabrication using low cost materials and equipment commonly found in research laboratories around the world is reported. The materials' cost to produce each nanoband is less than €0.01 and fabrication of a batch takes less than 1 h. The devices can be made of flexible plastics and their designs can be quickly and easily iterated. Facile methods of combining these nanobands into powerful devices, such as complete three-electrode systems, are also displayed. As a proof of concept, the electrodes are functionalized for the detection of a DNA sequence specific to SARS-CoV-2 and found to display single molecule sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...