Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(14): 3946-3949, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008747

ABSTRACT

On-chip optical sensors using ring- and disk-resonators have many potential sensing applications, yet robust and efficient fiber-to-chip coupling and the differing form factor between the two pose deployment challenges. To resolve this, we 3D-printed a ring-resonator onto the tip of a dual-core fiber and demonstrate its use as a remote temperature sensor. The fiber-tip optical circuit is fabricated using direct laser writing (DLW) with two-photon absorption photopolymer material IP-Dip, forming micrometer-scale waveguide cores having a refractive index of 1.53 with a surrounding air cladding. We connect the two-fiber cores by a printed bus-waveguide, utilizing total internal reflection mirrors, allowing light launched into one core to be guided back to the other core. Furthermore, a DLW printed racetrack resonator evanescently coupled to the bus waveguide (Q ∼ 3000) imposes spectral dips on resonance wavelengths. Light sent down into one core is interrogated upon return from the second core, all from the distal end of the sensor. When the sensing end's temperature is varied, we find a sensitivity of 78 pm/K, due to the polymer's thermo-optic index variation. The ring-resonator could be functionalized for other sensing applications.

2.
Light Sci Appl ; 13(1): 126, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825604

ABSTRACT

Photonic lantern (PL) spatial multiplexers show great promise for a range of applications, such as future high-capacity mode division multiplexing (MDM) optical communication networks and free-space optical communication. They enable efficient conversion between multiple single-mode (SM) sources and a multimode (MM) waveguide of the same dimension. PL multiplexers operate by facilitating adiabatic transitions between the SM arrayed space and the single MM space. However, current fabrication methods are forcing the size of these devices to multi-millimeters, making integration with micro-scale photonic systems quite challenging. The advent of 3D micro and nano printing techniques enables the fabrication of freestanding photonic structures with a high refractive index contrast (photopolymer-air). In this work we present the design, fabrication, and characterization of a 6-mode mixing, 375 µm long PL that enables the conversion between six single-mode inputs and a single six-mode waveguide. The PL was designed using a genetic algorithm based inverse design approach and fabricated directly on a 7-core fiber using a commercial two-photon polymerization-based 3D printer and a photopolymer. Although the waveguides exhibit high index contrast, low insertion loss (-2.6 dB), polarization dependent (-0.2 dB) and mode dependent loss (-4.4 dB) were measured.

3.
Nat Commun ; 13(1): 7862, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543782

ABSTRACT

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

4.
Opt Express ; 22(17): 20205-13, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25321230

ABSTRACT

Accurate amplitude and phase measurements of ultrashort optical waveforms are essential for their use in a wide range of scientific disciplines. Here we report the first demonstration of full-field optical reconstruction of ultrashort waveforms using a time-to-space converter, followed by a spatial recording of an interferogram. The algorithm-free technique is demonstrated by measuring ultrashort pulses that are widely frequency chirped from negative to positive, as well as phase modulated pulse packets. Amplitude and phase measurements were recorded for pulses ranging from 0.5 ps to 10 ps duration, with measured dimensionless chirp parameter values from -30 to 30. The inherently single-shot nature of time-to-space conversion enables full-field measurement of complex and non-repetitive waveforms.

5.
Opt Express ; 22(10): 12273-82, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921345

ABSTRACT

We propose a new type of photonic analog-to-digital converter (ADC), designed for high-resolution (>7 bit) and high sampling rates (scalable to tens of GS/s). It is based on encoding the input analog voltage signal onto the phase of an optical pulse stream originating from a mode-locked laser, and uses spatial oversampling as a means to improve the conversion resolution. This paper describes the concept of spatial oversampling and draws its similarities to the commonly used temporal oversampling. The design and fabrication of a LiNbO(3)/silica hybrid photonic integrated circuit for implementing the spatial oversampling is shown, and its abilities are demonstrated experimentally by digitizing gigahertz signals (frequencies up to 18GHz) at an undersampled rate of 2.56GS/s with a conversion resolution of up to 7.6 effective bits. Oversampling factors of 1-4 are demonstrated.

6.
Opt Lett ; 39(3): 642-5, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24487886

ABSTRACT

We generate transform-limited WDM optical sampling pulse bursts by filtering ultrashort pulses from a mode-locked laser. A phase spatial light modulator (SLM) is used in a biased pulse shaper to circumvent the need to modulate with 2π phase wraps, which are known to limit the phase response. The arrangement compresses and retimes user-selectable bandwidths from the optical short pulse source with precise control of pulse bandwidth, pulse stream rates, and duty cycle.

7.
Opt Express ; 22(25): 30520-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25606998

ABSTRACT

Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP01 and LP11). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.

8.
Opt Express ; 22(25): 31138-45, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607063

ABSTRACT

Phase modulated sub-picosecond pulses are converted by a time-to-space processor to quasi-monochromatic spatial beams that are spatially demultiplexed and coherently detected in real-time. The time-to-space processor, based on sum-frequency generation (SFG), serves as a serial-to-parallel converter, reducing the temporal bandwidth of the ultrashort pulse to match the bandwidth of optoelectronic receivers. As the SFG process is phase preserving, we demonstrate homodyne coherent detection of phase modulated temporal pulses by mixing the demultiplexed SFG beam with a narrow linewidth local oscillator (LO) resulting in single-shot phase detection of the converted pulses at a balanced detector. Positively and negatively phase-modulated signal pulses are individually detected and LO shot noise limited operation is achieved. This demonstration of real-time demultiplexing followed by single-shot full-field detection of individual pulses, highlights the potential of time-to-space conversion for ultrahigh bit rate optical communications and data processing applications.

9.
Opt Lett ; 38(22): 4708-11, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24322112

ABSTRACT

We report the first demonstration, to our knowledge, of time-to-space conversion of subpicosecond pulses in a slab nonlinear waveguide. By vertically confining the nondegenerate sum-frequency generation interaction between a spatially dispersed 100 fs signal pulse at 1.55 µm and a reference pulse in a titanium indiffused planar periodically poled lithium niobate crystal waveguide, we have attained a conversion efficiency of 0.1% and a conversion efficiency slope of 4% per watt of reference beam power. This was achieved while maintaining high conversion resolution, with a measured time window of operation of 48 ps resulting in a serial-to-parallel demultiplexing factor of 90.

10.
Opt Lett ; 38(17): 3268-71, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23988931

ABSTRACT

We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.

11.
Opt Express ; 20(24): 27388-95, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187595

ABSTRACT

We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.


Subject(s)
Lasers , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Linear Models
12.
Opt Lett ; 37(20): 4290-2, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23073440

ABSTRACT

We demonstrate passive generation of optical pulse trains with each pulse having distinct center carrier and spectra using tunable group delay (GD) staircase transfer functions. The GD steps result from opposite and equal magnitude GD slopes from narrowband and wideband tunable optical dispersion compensators. We use this technique to split the spectrum of a femtosecond pulse to a pulse burst with precise control of pulse time separation.

13.
Opt Lett ; 37(1): 1-3, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22212771

ABSTRACT

We demonstrate a tunable fiber ring laser employing a two-dimensional dispersion arrangement filter, with the lasing determined by a liquid crystal on silicon (LCoS) spatial light modulator. Lasing wavelengths can be tuned discontinuously across the communication C-band at an addressable resolution of less than 200 MHz. We introduce full characterization of the laser output including phase and amplitude stability and short and long-term bandwidth measurements.

14.
Opt Express ; 19(15): 14532-41, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934817

ABSTRACT

We present a Photonic Spectral Processor (PSP) that provides both fine spectral resolution and broad bandwidth support by dispersing light over two-dimensional space using the crossed-grating approach. The PSP uses a hybrid guided wave/free-space optics arrangement, where a waveguide grating router implemented in silica waveguides disperses the light in one dimension with a 100 GHz FSR and a bulk 1200 gr/mm diffraction grating disperses the light along the second (crossed) dimension. The diffracted light is focused by a lens onto a liquid-crystal on silicon, two-dimensional, phase-only, spatial light modulator, which we use to prescribe phase and amplitude to the signal's spectral components. With the 2-D PSP arrangement we are able to address frequency components at 0.2 GHz/column with an optical resolution of 3.3 GHz covering 40 C-band channels.

15.
Opt Express ; 19(18): 17298-307, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21935094

ABSTRACT

We simulate and analyze the propagation of truncated temporal Airy pulses in a single mode fiber in the presence of self-phase modulation and anomalous dispersion as a function of the launched Airy power and truncation coefficient. Soliton pulse shedding is observed, where the emergent soliton parameters depend on the launched Airy pulse characteristics. The Soliton temporal position shifts to earlier times with higher launched powers due to an earlier shedding event and with greater energy in the Airy tail due to collisions with the accelerating lobes. In spite of the Airy energy loss to the shed Soliton, the Airy pulse continues to exhibit the unique property of acceleration in time and the main lobe recovers from the energy loss (healing property of Airy waveforms).

16.
Opt Lett ; 36(11): 1957-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21633414

ABSTRACT

We report the first demonstration, to our knowledge, of time-to-space conversion of 1.55 µm femtosecond optical pulses using nondegenerate, collinearly phase-matched sum-frequency generation. A quasi-monochromatic and background-free output signal spanning a time window of 35 ps and with a pulse image width of 350 fs was achieved. The resulting serial-to-parallel resolution factor of 100 demonstrates the potential for all-optical complete frame demultiplexing of a 1 Tbit/s optical time-division multiplexing bit stream.

17.
Opt Lett ; 36(8): 1410-2, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21499373

ABSTRACT

We propose and demonstrate a compact tunable optical dispersion compensation (TODC) device with a 100 GHz free spectral range capable of mitigating chromatic dispersion impairments. The TODC is based on longitudinal movement of a waveguide grating router, resulting in chromatic dispersion compensation of ±1000 ps/nm. We employed our TODC device for compensating 42.8 Gbit/sec differential phase-shifting keying signal, transmitted over 50 km fiber with a -2 dB power penalty at 10⁻9.

18.
Opt Express ; 19(25): 25570-82, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273950

ABSTRACT

We investigate and analyze temporal soliton interactions with a dispersive truncated Airy pulse traveling in a nonlinear fiber at the same center wavelength (or frequency), via split step Fourier numerical simulation. Truncated Airy pulses, which remain self-similar during propagation and have a ballistic trajectory in the retarded time frame, can interact with a nearby soliton by its accelerating wavefront property. We find by tracking the fundamental parameters of the emergent soliton-time position, amplitude, phase and frequency-that they alter due to the primary collision with the Airy main lobe and the continuous co-propagation with the dispersed Airy background. These interactions are found to resemble coherent interactions when the initial time separation is small and incoherent at others. This is due to spectral content repositioning within the Airy pulse, changing the nature of interaction from coherent to incoherent. Following the collision, the soliton intensity oscillates as it relaxes. The initial parameters of the Airy pulse such as initial phase, amplitude and time position are varied to better understand the nature of the interactions.


Subject(s)
Light , Models, Theoretical , Nephelometry and Turbidimetry/methods , Refractometry/methods , Scattering, Radiation , Computer Simulation
19.
Appl Opt ; 43(1): 127-31, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14714653

ABSTRACT

Free-space-based channelized dynamic spectral equalizers are theoretically investigated by solving the temporal-frequency-dependent power-coupling integral for commonly used active device technologies: liquid-crystal modulators, tilting micromirror arrays, and deformable gratings. Channel-filter characteristics, such as bandwidth and interchannel transition, are found to depend on the different attenuation mechanisms provided by the active devices. Such information is required for choosing the proper device parameters in designing channel equalizers and similar free-space spatially dispersed subsystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...